Representations of étale Lie groupoids and modules over Hopf algebroids

Jure Kališnik

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 3, page 653-672
  • ISSN: 0011-4642

Abstract

top
The classical Serre-Swan's theorem defines an equivalence between the category of vector bundles and the category of finitely generated projective modules over the algebra of continuous functions on some compact Hausdorff topological space. We extend these results to obtain a correspondence between the category of representations of an étale Lie groupoid and the category of modules over its Hopf algebroid that are of finite type and of constant rank. Both of these constructions are functorially defined on the Morita category of étale Lie groupoids and we show that the given correspondence represents a natural equivalence between them.

How to cite

top

Kališnik, Jure. "Representations of étale Lie groupoids and modules over Hopf algebroids." Czechoslovak Mathematical Journal 61.3 (2011): 653-672. <http://eudml.org/doc/196325>.

@article{Kališnik2011,
abstract = {The classical Serre-Swan's theorem defines an equivalence between the category of vector bundles and the category of finitely generated projective modules over the algebra of continuous functions on some compact Hausdorff topological space. We extend these results to obtain a correspondence between the category of representations of an étale Lie groupoid and the category of modules over its Hopf algebroid that are of finite type and of constant rank. Both of these constructions are functorially defined on the Morita category of étale Lie groupoids and we show that the given correspondence represents a natural equivalence between them.},
author = {Kališnik, Jure},
journal = {Czechoslovak Mathematical Journal},
keywords = {étale Lie groupoids; Hopf algebroids; representations; modules; equivalence; Morita category; étale Lie groupoid; Hopf algebroids; representation; module; equivalence; Morita category},
language = {eng},
number = {3},
pages = {653-672},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Representations of étale Lie groupoids and modules over Hopf algebroids},
url = {http://eudml.org/doc/196325},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Kališnik, Jure
TI - Representations of étale Lie groupoids and modules over Hopf algebroids
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 3
SP - 653
EP - 672
AB - The classical Serre-Swan's theorem defines an equivalence between the category of vector bundles and the category of finitely generated projective modules over the algebra of continuous functions on some compact Hausdorff topological space. We extend these results to obtain a correspondence between the category of representations of an étale Lie groupoid and the category of modules over its Hopf algebroid that are of finite type and of constant rank. Both of these constructions are functorially defined on the Morita category of étale Lie groupoids and we show that the given correspondence represents a natural equivalence between them.
LA - eng
KW - étale Lie groupoids; Hopf algebroids; representations; modules; equivalence; Morita category; étale Lie groupoid; Hopf algebroids; representation; module; equivalence; Morita category
UR - http://eudml.org/doc/196325
ER -

References

top
  1. Adem, A., Leida, J., Ruan, Y., Orbifolds and Stringy Topology, Cambridge Tracts in Mathematics 171, Cambridge University Press, Cambridge (2007). (2007) Zbl1157.57001MR2359514
  2. Abad, C. Arias, Crainic, M., Representations up to homotopy and Bott's spectral sequence for Lie groupoids, Preprint arXiv: 0911.2859 (2009). (2009) MR3107517
  3. Atiyah, M. F., Anderson, D. R., K-Theory, With reprints of M. F. Atiyah: Power operations in K-theory. New York-Amsterdam, W. A. Benjamin (1967). (1967) Zbl0159.53401MR0224083
  4. Bos, R., Continuous representations of groupoids, Preprint arXiv: 0612639 (2006). (2006) MR2844451
  5. Blohmann, Ch., Tang, X., Weinstein, A., 10.1090/conm/462/09059, Contemporary Mathematics 462 (2008), 23-40. (2008) Zbl0216.33803MR2444366DOI10.1090/conm/462/09059
  6. Connes, A., A survey of foliations and operator algebras, Proc. Symp. Pure Math. 38 (1982), 521-628. (1982) Zbl0531.57023MR0679730
  7. Connes, A., Noncommutative Geometry, Academic Press, San Diego (1994). (1994) Zbl0818.46076MR1303779
  8. Crainic, M., Moerdijk, I., A homology theory for étale groupoids, J. Reine Angew. Math. 521 (2000), 25-46. (2000) Zbl0954.22002MR1752294
  9. Crainic, M., Moerdijk, I., 10.1006/aima.2000.1944, Adv. Math. 157 (2001), 177-197. (2001) Zbl0989.22010MR1813430DOI10.1006/aima.2000.1944
  10. Crainic, M., Moerdijk, I., 10.1007/s00208-003-0473-2, Math. Ann. 328 (2004), 59-85. (2004) Zbl1043.57012MR2030370DOI10.1007/s00208-003-0473-2
  11. Greub, W., Halperin, S., Vanstone, R., Connections, Curvature, and Cohomology. Vol. I: De Rham cohomology of manifolds and vector bundles, Pure and Applied Mathematics 47, Volume 1, Academic Press, New York (1972). (1972) Zbl0322.58001MR0336650
  12. Haefliger, A., 10.1007/BF02564582, Comment. Math. Helv. 32 (1958), 248-329. (1958) Zbl0085.17303MR0100269DOI10.1007/BF02564582
  13. Haefliger, A., Groupoïdes d'holonomie et classifiants, Astérisque 116 (1984), 70-97. (1984) Zbl0562.57012MR0755163
  14. Hilsum, M., Skandalis, G., 10.24033/asens.1537, Ann. Sci. Éc. Norm. Supér. 20 (1987), 325-390. (1987) Zbl0656.57015MR0925720DOI10.24033/asens.1537
  15. Kališnik, J., 10.1016/j.topol.2008.02.004, Topology Appl. 155 (2008), 1175-1188. (2008) MR2421827DOI10.1016/j.topol.2008.02.004
  16. Kališnik, J., Mrčun, J., 10.1016/S0019-3577(08)80016-X, Indag. Math., New Ser. 19 (2008), 73-96. (2008) MR2466395DOI10.1016/S0019-3577(08)80016-X
  17. Kamber, F., Tondeur, P., Foliated Bundles and Characteristic Classes, Lecture Notes in Mathematics 493, Berlin-Heidelberg-New York, Springer-Verlag (1975). (1975) Zbl0308.57011MR0402773
  18. Mackenzie, K. C. H., The General Theory of Lie Groupoids and Lie Algebroids, LMS Lecture Note Series 213, Cambridge University Press, Cambridge (2005). (2005) Zbl1078.58011MR2157566
  19. Milnor, J. W., Stasheff, J. D., Characteristic Classes, Annals of Mathematics Studies 76. Princeton, N.J. Princeton University Press and University of Tokyo Press (1974). (1974) Zbl0298.57008MR0440554
  20. MacLane, S., Categories for the Working Mathematician, 4th corrected printing, Graduate Texts in Mathematics, 5. New York etc., Springer-Verlag (1988). (1988) Zbl0705.18001MR1712872
  21. Moerdijk, I., 10.1090/S0002-9947-1988-0973173-9, Trans. Am. Math. Soc. 310 (1988), 629-668. (1988) Zbl0706.18007MR0973173DOI10.1090/S0002-9947-1988-0973173-9
  22. Moerdijk, I., 10.5802/aif.1254, Ann. Inst. Fourier 41 (1991), 189-209. (1991) Zbl0727.57029MR1112197DOI10.5802/aif.1254
  23. Moerdijk, I., 10.1090/conm/310/05405, Contemp. Math. 310 (2002), 205-222. (2002) Zbl1041.58009MR1950948DOI10.1090/conm/310/05405
  24. Moerdijk, I., Mrčun, J., Introduction to Foliations and Lie Groupoids, Cambridge Studies in Advanced Mathematics 91, Cambridge University Press, Cambridge (2003). (2003) MR2012261
  25. Moerdijk, I., Mrčun, J., Lie groupoids, sheaves and cohomology, Poisson Geometry, Deformation Quantisation and Group Representations, London Mathematical Society Lecture Note Series 323, Cambridge University Press, Cambridge (2005), 145-272. (2005) MR2166453
  26. Mrčun, J., Stability and invariants of Hilsum-Skandalis maps, PhD Thesis, Utrecht University (1996). (1996) 
  27. Mrčun, J., 10.1023/A:1007773511327, K-Theory 18 (1999), 235-253. (1999) MR1722796DOI10.1023/A:1007773511327
  28. Mrčun, J., 10.1016/S0022-4049(00)00071-2, J. Pure Appl. Algebra 160 (2001), 249-262. (2001) MR1836002DOI10.1016/S0022-4049(00)00071-2
  29. Mrčun, J., 10.1016/j.jpaa.2006.09.006, J. Pure Appl. Algebra 210 (2007), 267-282. (2007) MR2311185DOI10.1016/j.jpaa.2006.09.006
  30. Pradines, J., Morphisms between spaces of leaves viewed as fractions, Cah. Topologie Géom. Différ. Catég. 30 (1989), 229-246. (1989) Zbl0686.57013MR1029626
  31. Pronk, D., Scull, L., 10.4153/CJM-2010-024-1, Can. J. Math. 62 (2010), 614-645. (2010) Zbl1197.57026MR2666392DOI10.4153/CJM-2010-024-1
  32. Renault, J., A Groupoid Approach to C * -algebras, Lecture Notes in Mathematics 793, Berlin-Heidelberg-New York, Springer-Verlag (1980). (1980) Zbl0433.46049MR0584266
  33. Rieffel, M. A., 10.2140/pjm.1981.93.415, Pac. J. Math. 93 (1981), 415-429. (1981) Zbl0499.46039MR0623572DOI10.2140/pjm.1981.93.415
  34. Satake, I., 10.1073/pnas.42.6.359, Proc. Natl. Acad. Sci. USA 42 (1956), 359-363. (1956) Zbl0074.18103MR0079769DOI10.1073/pnas.42.6.359
  35. Segal, G., 10.1007/BF02684593, Publ. Math., Inst. Hates Étud. Sci. 34 (1968), 129-151. (1968) Zbl0199.26202MR0234452DOI10.1007/BF02684593
  36. Serre, J.-P., 10.2307/1969915, Ann. Math. 61 (1955), 197-278. (1955) Zbl0067.16201MR0068874DOI10.2307/1969915
  37. Swan, R. G., 10.1090/S0002-9947-1962-0143225-6, Trans. Am. Math. Soc. 105 (1962), 264-277. (1962) Zbl0109.41601MR0143225DOI10.1090/S0002-9947-1962-0143225-6
  38. Trentinaglia, G., 10.1016/j.aim.2010.03.014, Adv. Math. 225 (2010), 826-858. (2010) Zbl1216.58005MR2671181DOI10.1016/j.aim.2010.03.014
  39. Winkelnkemper, H. E., 10.1007/BF02329732, Ann. Global Anal. Geom. 1 (1983), 51-75. (1983) Zbl0526.53039MR0739904DOI10.1007/BF02329732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.