Representations of étale Lie groupoids and modules over Hopf algebroids
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 3, page 653-672
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKališnik, Jure. "Representations of étale Lie groupoids and modules over Hopf algebroids." Czechoslovak Mathematical Journal 61.3 (2011): 653-672. <http://eudml.org/doc/196325>.
@article{Kališnik2011,
abstract = {The classical Serre-Swan's theorem defines an equivalence between the category of vector bundles and the category of finitely generated projective modules over the algebra of continuous functions on some compact Hausdorff topological space. We extend these results to obtain a correspondence between the category of representations of an étale Lie groupoid and the category of modules over its Hopf algebroid that are of finite type and of constant rank. Both of these constructions are functorially defined on the Morita category of étale Lie groupoids and we show that the given correspondence represents a natural equivalence between them.},
author = {Kališnik, Jure},
journal = {Czechoslovak Mathematical Journal},
keywords = {étale Lie groupoids; Hopf algebroids; representations; modules; equivalence; Morita category; étale Lie groupoid; Hopf algebroids; representation; module; equivalence; Morita category},
language = {eng},
number = {3},
pages = {653-672},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Representations of étale Lie groupoids and modules over Hopf algebroids},
url = {http://eudml.org/doc/196325},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Kališnik, Jure
TI - Representations of étale Lie groupoids and modules over Hopf algebroids
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 3
SP - 653
EP - 672
AB - The classical Serre-Swan's theorem defines an equivalence between the category of vector bundles and the category of finitely generated projective modules over the algebra of continuous functions on some compact Hausdorff topological space. We extend these results to obtain a correspondence between the category of representations of an étale Lie groupoid and the category of modules over its Hopf algebroid that are of finite type and of constant rank. Both of these constructions are functorially defined on the Morita category of étale Lie groupoids and we show that the given correspondence represents a natural equivalence between them.
LA - eng
KW - étale Lie groupoids; Hopf algebroids; representations; modules; equivalence; Morita category; étale Lie groupoid; Hopf algebroids; representation; module; equivalence; Morita category
UR - http://eudml.org/doc/196325
ER -
References
top- Adem, A., Leida, J., Ruan, Y., Orbifolds and Stringy Topology, Cambridge Tracts in Mathematics 171, Cambridge University Press, Cambridge (2007). (2007) Zbl1157.57001MR2359514
- Abad, C. Arias, Crainic, M., Representations up to homotopy and Bott's spectral sequence for Lie groupoids, Preprint arXiv: 0911.2859 (2009). (2009) MR3107517
- Atiyah, M. F., Anderson, D. R., K-Theory, With reprints of M. F. Atiyah: Power operations in K-theory. New York-Amsterdam, W. A. Benjamin (1967). (1967) Zbl0159.53401MR0224083
- Bos, R., Continuous representations of groupoids, Preprint arXiv: 0612639 (2006). (2006) MR2844451
- Blohmann, Ch., Tang, X., Weinstein, A., 10.1090/conm/462/09059, Contemporary Mathematics 462 (2008), 23-40. (2008) Zbl0216.33803MR2444366DOI10.1090/conm/462/09059
- Connes, A., A survey of foliations and operator algebras, Proc. Symp. Pure Math. 38 (1982), 521-628. (1982) Zbl0531.57023MR0679730
- Connes, A., Noncommutative Geometry, Academic Press, San Diego (1994). (1994) Zbl0818.46076MR1303779
- Crainic, M., Moerdijk, I., A homology theory for étale groupoids, J. Reine Angew. Math. 521 (2000), 25-46. (2000) Zbl0954.22002MR1752294
- Crainic, M., Moerdijk, I., 10.1006/aima.2000.1944, Adv. Math. 157 (2001), 177-197. (2001) Zbl0989.22010MR1813430DOI10.1006/aima.2000.1944
- Crainic, M., Moerdijk, I., 10.1007/s00208-003-0473-2, Math. Ann. 328 (2004), 59-85. (2004) Zbl1043.57012MR2030370DOI10.1007/s00208-003-0473-2
- Greub, W., Halperin, S., Vanstone, R., Connections, Curvature, and Cohomology. Vol. I: De Rham cohomology of manifolds and vector bundles, Pure and Applied Mathematics 47, Volume 1, Academic Press, New York (1972). (1972) Zbl0322.58001MR0336650
- Haefliger, A., 10.1007/BF02564582, Comment. Math. Helv. 32 (1958), 248-329. (1958) Zbl0085.17303MR0100269DOI10.1007/BF02564582
- Haefliger, A., Groupoïdes d'holonomie et classifiants, Astérisque 116 (1984), 70-97. (1984) Zbl0562.57012MR0755163
- Hilsum, M., Skandalis, G., 10.24033/asens.1537, Ann. Sci. Éc. Norm. Supér. 20 (1987), 325-390. (1987) Zbl0656.57015MR0925720DOI10.24033/asens.1537
- Kališnik, J., 10.1016/j.topol.2008.02.004, Topology Appl. 155 (2008), 1175-1188. (2008) MR2421827DOI10.1016/j.topol.2008.02.004
- Kališnik, J., Mrčun, J., 10.1016/S0019-3577(08)80016-X, Indag. Math., New Ser. 19 (2008), 73-96. (2008) MR2466395DOI10.1016/S0019-3577(08)80016-X
- Kamber, F., Tondeur, P., Foliated Bundles and Characteristic Classes, Lecture Notes in Mathematics 493, Berlin-Heidelberg-New York, Springer-Verlag (1975). (1975) Zbl0308.57011MR0402773
- Mackenzie, K. C. H., The General Theory of Lie Groupoids and Lie Algebroids, LMS Lecture Note Series 213, Cambridge University Press, Cambridge (2005). (2005) Zbl1078.58011MR2157566
- Milnor, J. W., Stasheff, J. D., Characteristic Classes, Annals of Mathematics Studies 76. Princeton, N.J. Princeton University Press and University of Tokyo Press (1974). (1974) Zbl0298.57008MR0440554
- MacLane, S., Categories for the Working Mathematician, 4th corrected printing, Graduate Texts in Mathematics, 5. New York etc., Springer-Verlag (1988). (1988) Zbl0705.18001MR1712872
- Moerdijk, I., 10.1090/S0002-9947-1988-0973173-9, Trans. Am. Math. Soc. 310 (1988), 629-668. (1988) Zbl0706.18007MR0973173DOI10.1090/S0002-9947-1988-0973173-9
- Moerdijk, I., 10.5802/aif.1254, Ann. Inst. Fourier 41 (1991), 189-209. (1991) Zbl0727.57029MR1112197DOI10.5802/aif.1254
- Moerdijk, I., 10.1090/conm/310/05405, Contemp. Math. 310 (2002), 205-222. (2002) Zbl1041.58009MR1950948DOI10.1090/conm/310/05405
- Moerdijk, I., Mrčun, J., Introduction to Foliations and Lie Groupoids, Cambridge Studies in Advanced Mathematics 91, Cambridge University Press, Cambridge (2003). (2003) MR2012261
- Moerdijk, I., Mrčun, J., Lie groupoids, sheaves and cohomology, Poisson Geometry, Deformation Quantisation and Group Representations, London Mathematical Society Lecture Note Series 323, Cambridge University Press, Cambridge (2005), 145-272. (2005) MR2166453
- Mrčun, J., Stability and invariants of Hilsum-Skandalis maps, PhD Thesis, Utrecht University (1996). (1996)
- Mrčun, J., 10.1023/A:1007773511327, K-Theory 18 (1999), 235-253. (1999) MR1722796DOI10.1023/A:1007773511327
- Mrčun, J., 10.1016/S0022-4049(00)00071-2, J. Pure Appl. Algebra 160 (2001), 249-262. (2001) MR1836002DOI10.1016/S0022-4049(00)00071-2
- Mrčun, J., 10.1016/j.jpaa.2006.09.006, J. Pure Appl. Algebra 210 (2007), 267-282. (2007) MR2311185DOI10.1016/j.jpaa.2006.09.006
- Pradines, J., Morphisms between spaces of leaves viewed as fractions, Cah. Topologie Géom. Différ. Catég. 30 (1989), 229-246. (1989) Zbl0686.57013MR1029626
- Pronk, D., Scull, L., 10.4153/CJM-2010-024-1, Can. J. Math. 62 (2010), 614-645. (2010) Zbl1197.57026MR2666392DOI10.4153/CJM-2010-024-1
- Renault, J., A Groupoid Approach to -algebras, Lecture Notes in Mathematics 793, Berlin-Heidelberg-New York, Springer-Verlag (1980). (1980) Zbl0433.46049MR0584266
- Rieffel, M. A., 10.2140/pjm.1981.93.415, Pac. J. Math. 93 (1981), 415-429. (1981) Zbl0499.46039MR0623572DOI10.2140/pjm.1981.93.415
- Satake, I., 10.1073/pnas.42.6.359, Proc. Natl. Acad. Sci. USA 42 (1956), 359-363. (1956) Zbl0074.18103MR0079769DOI10.1073/pnas.42.6.359
- Segal, G., 10.1007/BF02684593, Publ. Math., Inst. Hates Étud. Sci. 34 (1968), 129-151. (1968) Zbl0199.26202MR0234452DOI10.1007/BF02684593
- Serre, J.-P., 10.2307/1969915, Ann. Math. 61 (1955), 197-278. (1955) Zbl0067.16201MR0068874DOI10.2307/1969915
- Swan, R. G., 10.1090/S0002-9947-1962-0143225-6, Trans. Am. Math. Soc. 105 (1962), 264-277. (1962) Zbl0109.41601MR0143225DOI10.1090/S0002-9947-1962-0143225-6
- Trentinaglia, G., 10.1016/j.aim.2010.03.014, Adv. Math. 225 (2010), 826-858. (2010) Zbl1216.58005MR2671181DOI10.1016/j.aim.2010.03.014
- Winkelnkemper, H. E., 10.1007/BF02329732, Ann. Global Anal. Geom. 1 (1983), 51-75. (1983) Zbl0526.53039MR0739904DOI10.1007/BF02329732
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.