Twisted K-theory of differentiable stacks

Jean-Louis Tu; Ping Xu; Camille Laurent-Gengoux

Annales scientifiques de l'École Normale Supérieure (2004)

  • Volume: 37, Issue: 6, page 841-910
  • ISSN: 0012-9593

How to cite

top

Tu, Jean-Louis, Xu, Ping, and Laurent-Gengoux, Camille. "Twisted K-theory of differentiable stacks." Annales scientifiques de l'École Normale Supérieure 37.6 (2004): 841-910. <http://eudml.org/doc/82648>.

@article{Tu2004,
author = {Tu, Jean-Louis, Xu, Ping, Laurent-Gengoux, Camille},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {-theory; differentiable stack; gerbe; groupoid; orbifold},
language = {eng},
number = {6},
pages = {841-910},
publisher = {Elsevier},
title = {Twisted K-theory of differentiable stacks},
url = {http://eudml.org/doc/82648},
volume = {37},
year = {2004},
}

TY - JOUR
AU - Tu, Jean-Louis
AU - Xu, Ping
AU - Laurent-Gengoux, Camille
TI - Twisted K-theory of differentiable stacks
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 6
SP - 841
EP - 910
LA - eng
KW - -theory; differentiable stack; gerbe; groupoid; orbifold
UR - http://eudml.org/doc/82648
ER -

References

top
  1. [1] Adem A., Ruan Y., Twisted orbifold K-theory, Comm. Math. Phys.237 (2003) 533-556. Zbl1051.57022MR1993337
  2. [2] Artin M. et al. , Théorie des topos et cohomologie étale des schémas, in: Séminaire de géométrie algébrique, Lecture Notes in Mathematics, vols. 269, 270, 305, Springer, Berlin, 1972–1973. 
  3. [3] Atiyah M., K-theory. Lecture notes by D.W. Anderson, 1967. MR224083
  4. [4] Atiyah M., K-theory past and present, math.KT/0012213. MR2091892
  5. [5] Atiyah M., Segal G., Twisted K-theory, math.KT/0407054. 
  6. [6] Baum P., Connes A., Chern character for discrete groups, in: A fête of topology, Academic Press, New York, 1988, pp. 163-232. Zbl0656.55005MR928402
  7. [7] Baum P., Connes A., Higson N., Classifying space for proper actions and K-theory of group C * -algebras, in: C * -Algebras: 1943–1993 (San Antonio, TX, 1993), Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 240-291. Zbl0830.46061MR1292018
  8. [8] Behrend K., Edidin B., Fantechi B., Fulton W., Gottsche L., Kresch K., Introduction to stacks, in preparation. 
  9. [9] Behrend K., Xu P., S 1 -bundles and gerbes over differentiable stack, C. R. Acad. Sci. Paris Sér. I336 (2003) 163-168. Zbl1039.58016MR1969572
  10. [10] Behrend, K., Xu P., Differentiable stacks and gerbes, in preparation. Zbl1227.14007
  11. [11] Blackadar B., K-Theory for Operator Algebras, Mathematical Sciences Research Institute Publications, vol. 5, Cambridge University Press, Cambridge, 1998. Zbl0913.46054MR1656031
  12. [12] Blanchard E., Déformations de C * -algèbres de Hopf, Bull. Soc. Math. France124 (1996) 141-215. Zbl0851.46040MR1395009
  13. [13] Bost J.-B., Principe d'Oka, K-théorie et systèmes dynamiques non commutatifs, Invent. Math.101 (1990) 261-333. Zbl0719.46038MR1062964
  14. [14] Brylinski J.-L., Loop Spaces, Characteristic Classes and Geometric Quantization, Progress in Mathematics, vol. 107, Birkhäuser, Basel, 1993. Zbl0823.55002MR1197353
  15. [15] Bouwknegt P., Mathai V., D-branes, B-fields and twisted K-theory, J. High Energy Phys.3 (2000) 7-11. Zbl0959.81037MR1756434
  16. [16] Bouwknegt P., Carey A., Mathai V., Murray M., Stevenson D., Twisted K-theory and K-theory of bundle gerbes, Comm. Math. Phys.228 (2002) 17-45. Zbl1036.19005MR1911247
  17. [17] Connes A., Cyclic Cohomology and the Transverse Fundamental Class of a Foliation, in: Pitman Research Notes Math. Ser., vol. 123, Longman Sci., Harlow, 1986, pp. 52-144. Zbl0647.46054MR866491
  18. [18] Connes A., Skandalis G., The longitudinal index theorem for foliations, Publ. Res. Inst. Math. Sci. Kyoto Univ.20 (1984) 1139-1183. Zbl0575.58030MR775126
  19. [19] Crainic M., Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, Comment. Math. Helv.78 (2003) 681-721. Zbl1041.58007MR2016690
  20. [20] Crainic M., Moerdijk I., A homology theory for étale groupoids, J. Reine Angew. Math.521 (2000) 25-46. Zbl0954.22002MR1752294
  21. [21] Dixmier J., C * -Algebras, North Holland, Amsterdam, 1977. Zbl0372.46058MR458185
  22. [22] Dixmier J., Douady A., Champs continus d’espaces hilbertiens et de C * -algèbres, Bull. Soc. Math. France91 (1963) 227-284. Zbl0127.33102MR163182
  23. [23] Donovan P., Karoubi M., Graded Brauer groups and K-theory with local coefficients, Inst. Hautes Études Sci. Publ.38 (1970) 5-25. Zbl0207.22003MR282363
  24. [24] Dupont J., Curvature and Characteristic Classes, Lecture Notes in Mathematics, vol. 640, Springer, Berlin, 1978. Zbl0373.57009MR500997
  25. [25] Dupré M.J., Gillette R.M., Banach Bundles, Banach Modules and Automorphisms of C * -Algebras, Pitman Research Notes in Mathematics, vol. 92, 1983. Zbl0536.46048MR721812
  26. [26] Fell J., Doran R., Representations of C * -Algebras, Locally Compact Groups, and Banach ∗-Algebraic Bundles, vol. 2, Pure and Applied Mathematics, vol. 126, Academic Press, Boston, MA, 1988. Zbl0652.46051
  27. [27] Freed D., The Verlinde algebra is twisted equivariant K-theory, Turkish J. Math.25 (2001) 159-167. Zbl0971.55006MR1829086
  28. [28] Fulman I., Muhly P., Bimodules, spectra, and Fell bundles, Israel J. Math.108 (1998) 193-215. Zbl0917.46064MR1669380
  29. [29] Gabriel P., Zisman M., Calculus of Fractions and Homotopy Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 35, Springer, Berlin, 1967. Zbl0186.56802MR210125
  30. [30] Giraud J., Cohomologie non abélienne, Die Grundlehren der mathematischen Wissenschaften, vol. 179, Springer, Berlin, 1971. Zbl0226.14011MR344253
  31. [31] Grothendieck A., Le groupe de Brauer, Séminaire Bourbaki (1964/65), Collection Hors Série de la S.M.F.9 (1995) 199-219. Zbl0186.54702MR1608798
  32. [32] Guillemin V., Sternberg S., Supersymmetry and Equivariant de Rham Theory, Springer, Berlin, 1999. Zbl0934.55007MR1689252
  33. [33] Haefliger A., Groupoïdes d'holonomie et classifiants, Astérisque116 (1984) 70-97. Zbl0562.57012MR755163
  34. [34] Higson N., On a technical theorem of Kasparov, J. Funct. Anal.73 (1987) 107-112. Zbl0623.46035MR890657
  35. [35] Higson N., The Baum–Connes conjecture, in: Proceedings of the International Congress of Mathematicians, vol. II (Berlin, 1998), Doc. Math., Extra vol. II, 1998, pp. 637-646, (electronic). Zbl0911.46041MR1648112
  36. [36] Higson N., Lafforgue V., Skandalis G., Counterexamples to the Baum–Connes conjecture, Geom. Funct. Anal.12 (2) (2002) 330-354. Zbl1014.46043MR1911663
  37. [37] Higson N., Roe J., Yu G., A coarse Mayer–Vietoris principle, Math. Proc. Cambridge Philos. Soc.114 (1993) 85-97. Zbl0792.55001MR1219916
  38. [38] Hilsum M., Skandalis G., Morphismes K-orientés d'espaces de feuilles et fonctorialité en théorie de Kasparov (d'après une conjecture d'A. Connes), Ann. Sci. Éc. Norm. Sup.20 (1987) 325-390. Zbl0656.57015MR925720
  39. [39] Hitchin N., Lectures on special Lagrangian submanifolds, AMS/IP Stud. Adv. Math.23 (1999) 151-182. Zbl1079.14522MR1876068
  40. [40] Kellendonk J., Noncommutative geometry of tilings and gap labelling, Rev. Math. Phys.7 (7) (1995) 1133-1180. Zbl0847.52022MR1359991
  41. [41] Koosis P., An irreducible unitary representation of a compact group is finite dimensional, Proc. Amer. Math. Soc.8 (1957) 712-715. Zbl0079.32802MR87888
  42. [42] Kumjian A., Fell Bundles over groupoids, Proc. Amer. Math. Soc.128 (1998) 1115-1125. Zbl0891.46038MR1443836
  43. [43] Kumjian A., Muhly P., Renault J., Williams D., The Brauer group of a locally compact groupoid, Amer. J. Math.120 (1998) 901-954. Zbl0916.46050MR1646047
  44. [44] Le Gall P.-Y., Théorie de Kasparov équivariante et groupoïdes, 16 (1999) 361-390. Zbl0932.19004MR1686846
  45. [45] Lupercio E., Uribe B., Gerbes over orbifolds and twisted K-theory, Comm. Math. Phys.245 (2004) 449-489. Zbl1068.53034MR2045679
  46. [46] Mathai V., Stevenson D., Chern character in twisted K-theory, equivariant and holomorphic cases, Comm. Math. Phys.236 (2003) 161-186. Zbl1030.19004MR1977885
  47. [47] Meinrenken E., The basic gerbe over a compact simple Lie group, Enseign. Math. (2)49 (2003) 307-333. Zbl1061.53034MR2026898
  48. [48] Mickelsson J., Gerbes, (twisted) K-theory, and the supersymmetric WZW model, hep-th/0206139. Zbl1058.81067
  49. [49] Minasian R., Moore G., K-theory and Ramond–Ramond charge, J. High Energy Phys.11 (1997) 2-7. Zbl0949.81511MR1606278
  50. [50] Monthubert B., Groupoids of manifolds with corners and index theory, in: Groupoids in Analysis, Geometry, and Physics (Boulder, CO, 1999), Contemp. Math., vol. 282, Amer. Math. Soc., Providence, RI, 2001, pp. 147-157. Zbl1043.35148MR1855248
  51. [51] Mrčun J., Functoriality of the bimodule associated to a Hilsum–Skandalis map, 18 (1999) 235-253. Zbl0938.22002MR1722796
  52. [52] Moerdijk I., Orbifolds as groupoids: an introduction, in: Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemp. Math., vol. 310, 2002, pp. 205-222. Zbl1041.58009MR1950948
  53. [53] Moerdijk I., Introduction to the language of stacks and gerbes, math.AT/0212266. 
  54. [54] Moerdijk I., Pronk D.A., Orbifolds, sheaves and groupoids, 12 (1997) 3-21. Zbl0883.22005MR1466622
  55. [55] Muhly P., Bundles over groupoids, in: Groupoids in Analysis, Geometry and Physics (Boulder, CO, 1999), Contemp. Math., vol. 282, Amer. Math. Soc., Providence, RI, 2000, pp. 67-82. Zbl1011.46052MR1855243
  56. [56] Muhly P., Renault J., Williams D., Equivalence and isomorphism for groupoid C * -algebras, J. Operator Theory17 (1987) 3-22. Zbl0645.46040MR873460
  57. [57] Paterson A., The analytic index for proper, Lie groupoid actions, in: Groupoids in Analysis, Geometry, and Physics (Boulder, CO, 1999), Contemp. Math., vol. 282, Amer. Math. Soc., Providence, RI, 2001, pp. 115-135. Zbl0995.19005MR1855246
  58. [58] Pedersen G., C * -Algebras and their Automorphism Groups, London Mathematical Society Monographs, vol. 14, Academic Press, London, 1979. Zbl0416.46043MR548006
  59. [59] Pressley A., Segal G., Loop Groups, Oxford Mathematical Monographs, Oxford University Press, New York, 1986. Zbl0618.22011MR900587
  60. [60] Raeburn I., Taylor J., Continuous trace C * -algebras with given Dixmier–Douady class, J. Austral. Math. Soc. Ser. A38 (1985) 394-407. Zbl0627.46068MR779202
  61. [61] Renault J., A Groupoid Approach to C * -Algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980. Zbl0433.46049MR584266
  62. [62] Renault J., Représentation des produits croisés d'algèbres de groupoïdes, J. Operator Theory18 (1987) 67-97. Zbl0659.46058MR912813
  63. [63] Rosenberg J., Continuous-trace algebras from the bundle theoretic point of view, J. Austral. Math. Soc. Ser. A47 (1989) 368-381. Zbl0695.46031MR1018964
  64. [64] Schweitzer L.B., A short proof that M n A is local ifA is local and Fréchet, Internat. J. Math.3 (4) (1992) 581-589. Zbl0804.46054MR1168361
  65. [65] Segal G., Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math.34 (1968) 129-151. Zbl0199.26202MR234452
  66. [66] Segal G., Fredholm complexes, Quart. J. Math. Oxford Ser. (2)21 (1970) 385-402. Zbl0213.25403MR271930
  67. [67] Skandalis G., Tu J.L., Yu G., The coarse Baum–Connes conjecture and groupoids, Topology41 (4) (2002) 807-834. Zbl1033.19003MR1905840
  68. [68] Tu J.-L., La conjecture de Novikov pour les feuilletages hyperboliques, 16 (1999) 129-184. Zbl0932.19005MR1671260
  69. [69] Tu J.-L., La conjecture de Baum–Connes pour les feuilletages moyennables, 17 (3) (1999) 215-264. Zbl0939.19001MR1703305
  70. [70] Tuynman G.M., Wiegerinck G.M., Central extensions and physics, J. Geom. Phys.4 (1987) 207-258. Zbl0649.58014MR948561
  71. [71] Yamagami S., On primitive ideal spaces of C * -algebras over certain locally compact groupoids, in: Mappings of Operator Algebras (Philadelphia, PA, 1988), Progress in Math., vol. 84, Birkhäuser Boston, Boston, MA, 1990, pp. 199-204. Zbl0733.46035MR1103378
  72. [72] Wegge-Olsen N.E., K-theory and C * -algebras, A friendly approach, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993. Zbl0780.46038MR1222415
  73. [73] Weil A., Sur les théorèmes de De Rham, Comment. Math. Helv.26 (1959) 119-145. Zbl0047.16702MR50280
  74. [74] Weinstein A., Xu P., Extensions of symplectic groupoids and quantization, J. Reine Angew. Math.417 (1991) 159-189. Zbl0722.58021MR1103911
  75. [75] Witten E., D-branes and K-theory, J. High Energy Phys.12 (1998) 19-44. Zbl0959.81070MR1674715
  76. [76] Witten E., Overview of K-theory applied to strings, Internat. J. Modern Phys. A16 (2001) 693-706. Zbl0980.81049MR1827946
  77. [77] Xu P., Morita equivalent symplectic groupoids, Math. Sci. Res. Inst. Publ.20 (1991) 291-311. Zbl0733.58013MR1104935

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.