Maximal Mordell-Weil lattices of fibred surfaces with p g = q = 0

Shinya Kitagawa

Rendiconti del Seminario Matematico della Università di Padova (2007)

  • Volume: 117, page 205-230
  • ISSN: 0041-8994

How to cite

top

Kitagawa, Shinya. "Maximal Mordell-Weil lattices of fibred surfaces with $p_g=q=0$." Rendiconti del Seminario Matematico della Università di Padova 117 (2007): 205-230. <http://eudml.org/doc/108713>.

@article{Kitagawa2007,
author = {Kitagawa, Shinya},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {205-230},
publisher = {Seminario Matematico of the University of Padua},
title = {Maximal Mordell-Weil lattices of fibred surfaces with $p_g=q=0$},
url = {http://eudml.org/doc/108713},
volume = {117},
year = {2007},
}

TY - JOUR
AU - Kitagawa, Shinya
TI - Maximal Mordell-Weil lattices of fibred surfaces with $p_g=q=0$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 117
SP - 205
EP - 230
LA - eng
UR - http://eudml.org/doc/108713
ER -

References

top
  1. [1] E. ARBARELLO - M. CORNALBA - P. A. GRIFFITHS J. HARRIS, Geometry of Algebraic Curves, Volume I, GMW 267, Springer-Verlag, 1985. Zbl0559.14017MR770932
  2. [2] M. COPPENS - G. MARTENS, Secant spaces and Clifford's theorem, Compositio Math., 78 (1991), pp. 193-212. Zbl0741.14035MR1104787
  3. [3] M. DEMAZURE - H. PINKHAM - B. TEISSIER, Séminaire sur les Singularités des Surfaces, Lec. Notes in Math., 777 (Springer, Berlin, 1980), pp. viii+339. Zbl0415.00010MR579026
  4. [4] P. DELIGNE - N. KATZ (eds), Groupes de monodromie en géométrie algébrique II. Séminaire de Géométrie Algébrique de Bois-Marie, 1967-1969 (SGA 7 II), Lec. Notes in Math., 340 (Springer-Verlag, Berlin New York, 1973) pp. x+438. Zbl0258.00005MR354657
  5. [5] R. HARTSHORNE, Curves with high self-intersection on algebraic surfaces. Publ. Math. IHES 36 (1969), pp. 111-125. Zbl0197.17505MR266924
  6. [6] S. IITAKA, On irreducible plane curves, Saitama Math. J., 1 (1983), pp. 47-63. Zbl0517.14009MR717927
  7. [7] S. KITAGAWA, On Mordell-Weil lattices of bielliptic fibrations on rational surfaces, J. Math. Soc. Japan, 57 (2005), pp. 137-155. Zbl1093.14051MR2114725
  8. [8] S. KITAGAWA - K. KONNO, Fibred rational surfaces with extremal MordellWeil lattices, Math. Z., 251 (2005), pp. 179-204. Zbl1082.14038MR2176471
  9. [9] G. MARTENS, The gonality of curves on a Hirzebruch surface, Arch. Math., 67 (1996), pp. 349-352. Zbl0872.14022MR1407339
  10. [10] A. NOMA, Very ample line bundles on regular surfaces obtained by projection, preprint (received September 2nd, 2005). Zbl1108.14008MR2271360
  11. [11] M.-H. SAITO - V. NGUYEN KHAC, On Mordell-Weil lattices for nonhyperelliptic fibrations of surfaces with zero geometric genus and irregularity, Izv. Ross. Akad. Nauk Ser. Mat., 66 (2002), pp. 137-154. Zbl1053.14043MR1942097
  12. [12] M.-H. SAITO - K. SAKAKIBARA, On Mordell-Weil lattices of higher genus fibrations on rational surfaces, J. Math. Kyoto Univ., 34 (1994), pp. 859-871. Zbl0860.14034MR1311624
  13. [13] T. SHIODA, Mordell-Weil lattices for higher genus fibration over a curve. New trends in algebraic geometry (Warwick, 1996), pp. 359-373, London Math. Soc. Lecture Note Ser., 264, Cambridge Univ. Press, Cambridge, 1999. Zbl0947.14012MR1714831

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.