On -summation and confluence
Lucia Di Vizio[1]; Changgui Zhang[2]
- [1] Institut de Mathématiques de Jussieu Topologie et géométrie algébriques, Case 7012 2, place Jussieu 75251 Paris Cedex 05 (France)
- [2] Laboratoire P. Painleve U.F.R. de Mathématiques Pures et Appliquées USTL, Cité scientifique 59655 Villeneuve d’Ascq Cedex (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 1, page 347-392
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDi Vizio, Lucia, and Zhang, Changgui. "On $q$-summation and confluence." Annales de l’institut Fourier 59.1 (2009): 347-392. <http://eudml.org/doc/10395>.
@article{DiVizio2009,
abstract = {This paper is divided in two parts. In the first part we study a convergent $q$-analog of the divergent Euler series, with $q\in (0,1)$, and we show how the Borel sum of a generic Gevrey formal solution to a differential equation can be uniformly approximated on a convenient sector by a meromorphic solution of a corresponding $q$-difference equation. In the second part, we work under the assumption $q\in (1,+\infty )$. In this case, at least four different $q$-Borel sums of a divergent power series solution of an irregular singular analytic $q$-difference equations are spread in the literature: under convenient assumptions we clarify the relations among them.},
affiliation = {Institut de Mathématiques de Jussieu Topologie et géométrie algébriques, Case 7012 2, place Jussieu 75251 Paris Cedex 05 (France); Laboratoire P. Painleve U.F.R. de Mathématiques Pures et Appliquées USTL, Cité scientifique 59655 Villeneuve d’Ascq Cedex (France)},
author = {Di Vizio, Lucia, Zhang, Changgui},
journal = {Annales de l’institut Fourier},
keywords = {Summation; confluence; $q$-difference equations; Euler series; summation; -difference equations},
language = {eng},
number = {1},
pages = {347-392},
publisher = {Association des Annales de l’institut Fourier},
title = {On $q$-summation and confluence},
url = {http://eudml.org/doc/10395},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Di Vizio, Lucia
AU - Zhang, Changgui
TI - On $q$-summation and confluence
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 1
SP - 347
EP - 392
AB - This paper is divided in two parts. In the first part we study a convergent $q$-analog of the divergent Euler series, with $q\in (0,1)$, and we show how the Borel sum of a generic Gevrey formal solution to a differential equation can be uniformly approximated on a convenient sector by a meromorphic solution of a corresponding $q$-difference equation. In the second part, we work under the assumption $q\in (1,+\infty )$. In this case, at least four different $q$-Borel sums of a divergent power series solution of an irregular singular analytic $q$-difference equations are spread in the literature: under convenient assumptions we clarify the relations among them.
LA - eng
KW - Summation; confluence; $q$-difference equations; Euler series; summation; -difference equations
UR - http://eudml.org/doc/10395
ER -
References
top- G. E. Andrew, R. Askey, R. Roy, Special functions, 71 (1999), Cambridge University Press, Cambridge Zbl0920.33001MR1688958
- Y. André, Séries Gevrey de type arithmétique. I. Théorèmes de pureté et de dualité, Ann. of Math. 151 (2000), 705-740 Zbl1037.11049MR1765707
- E. W. Barnes, A new development of the theory of the hypergeometric functions, Proceedings of the London Mathematical Society 6 (1908), 141-177 Zbl39.0506.01
- J.-P. Bézivin, Sur les équations fonctionnelles aux -différences, Aequationes Mathematicae 43 (1992), 159-176 Zbl0757.39002MR1158724
- A. De Sole, V. G. Kac, On integral representations of -gamma and -beta functions, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e Applicazioni 16 (2005), 11-29 Zbl1225.33017MR2225920
- L. Di Vizio, Arithmetic theory of -difference equations. The -analogue of Grothendieck-Katz’s conjecture on -curvatures, Inventiones Mathematicae 150 (2002), 517-578 Zbl1023.12004MR1946552
- Higher transcendental functions, I (1981), ErdélyiA.A., Melbourne, Fla.
- G. Gasper, M. Rahman, Basic hypergeometric series, 35 (1990), Cambridge University Press, Cambridge Zbl0695.33001MR1052153
- M. Loday-Richaud, Introduction à la multisommabilité, Gazette des Mathématiciens (1990), 41-63 Zbl0722.34005MR1060425
- M. Loday-Richaud, Solutions formelles des systèmes différentiels linéaires méromorphes et sommation, Expositiones Mathematicae. International Journal 13 (1995), 116-162 Zbl0831.34002MR1346200
- B. Malgrange, Sommation des séries divergentes, Expositiones Mathematicae. International Journal 13 (1995), 163-222 Zbl0836.40004MR1346201
- F. Marotte, C. Zhang, Multisommabilité des séries entières solutions formelles d’une équation aux -différences linéaire analytique, Annales de l’Institut Fourier 50 (2000), 1859-1890 Zbl1063.39001MR1817385
- J.-P. Ramis, About the growth of entire functions solutions of linear algebraic -difference equations, Toulouse. Faculté des Sciences. Annales. Mathématiques. Série 6 1 (1992), 53-94 Zbl0796.39005MR1191729
- J.-P. Ramis, J. Martinet, Théorie de Galois différentielle et resommation, (1990), 117-214, Academic Press Zbl0722.12007MR1038060
- J.-P. Ramis, C. Zhang, Développement asymptotique -Gevrey et fonction thêta de Jacobi, C. R., Math. 335 (2002), 899-902 Zbl1025.39014MR1952546
- J. Sauloy, Systèmes aux -différences singuliers réguliers: classification, matrice de connexion et monodromie, Annales de l’Institut Fourier 50 (2000), 1021-1071 Zbl0957.05012MR1799737
- J. Sauloy, La filtration canonique par les pentes d’un module aux -différences, (2002) Zbl0998.39011
- J. Sauloy, La filtration canonique par les pentes d’un module aux -différences et le gradué associé, Annales de l’Institut Fourier 54 (2004), 181-210 Zbl1061.39013MR2069126
- E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, (1988), Cambridge University Press, Cambridge Zbl0951.30002MR1424469
- C. Zhang, Développements asymptotiques -Gevrey et séries -sommables, Annales de l’Institut Fourier 49 (1999), 227-261 Zbl0974.39009MR1688144
- C. Zhang, Transformations de -Borel-Laplace au moyen de la fonction thêta de Jacobi, Comptes Rendus de l’Académie des Sciences Série I. Mathématique 331 (2000), 31-34 Zbl1101.33307MR1780181
- C. Zhang, Sur la fonction -gamma de Jackson, Aequationes Mathematicae 4 (2001), 60-78 Zbl0990.39018MR1849140
- C. Zhang, Une sommation discrète pour des équations aux -différences linéaires et à coefficients analytiques: théorie générale et exemples, (2002), 309-329, World Sci. Publishing, River Edge, NJ Zbl1041.39013MR2067338
- C. Zhang, Sur les fonctions -Bessel de Jackson, Journal of Approximation Theory 122 (2003), 208-223 Zbl1023.33012MR1988300
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.