Projectively Anosov flows with differentiable (un)stable foliations

Takeo Noda

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 5, page 1617-1647
  • ISSN: 0373-0956

Abstract

top
We consider projectively Anosov flows with differentiable stable and unstable foliations. We characterize the flows on T 2 which can be extended on a neighbourhood of T 2 into a projectively Anosov flow so that T 2 is a compact leaf of the stable foliation. Furthermore, to realize this extension on an arbitrary closed 3-manifold, the topology of this manifold plays an essential role. Thus, we give the classification of projectively Anosov flows on T 3 . In this case, the only flows on T 2 which extend to T 3 (in the above way) are the linear flows.

How to cite

top

Noda, Takeo. "Projectively Anosov flows with differentiable (un)stable foliations." Annales de l'institut Fourier 50.5 (2000): 1617-1647. <http://eudml.org/doc/75466>.

@article{Noda2000,
abstract = {We consider projectively Anosov flows with differentiable stable and unstable foliations. We characterize the flows on $T^2$ which can be extended on a neighbourhood of $T^2$ into a projectively Anosov flow so that $T^2$ is a compact leaf of the stable foliation. Furthermore, to realize this extension on an arbitrary closed 3-manifold, the topology of this manifold plays an essential role. Thus, we give the classification of projectively Anosov flows on $T^3$. In this case, the only flows on $T^2$ which extend to $T^3$ (in the above way) are the linear flows.},
author = {Noda, Takeo},
journal = {Annales de l'institut Fourier},
keywords = {projectively Anosov flows; stable foliations; bi-contact structures},
language = {eng},
number = {5},
pages = {1617-1647},
publisher = {Association des Annales de l'Institut Fourier},
title = {Projectively Anosov flows with differentiable (un)stable foliations},
url = {http://eudml.org/doc/75466},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Noda, Takeo
TI - Projectively Anosov flows with differentiable (un)stable foliations
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 5
SP - 1617
EP - 1647
AB - We consider projectively Anosov flows with differentiable stable and unstable foliations. We characterize the flows on $T^2$ which can be extended on a neighbourhood of $T^2$ into a projectively Anosov flow so that $T^2$ is a compact leaf of the stable foliation. Furthermore, to realize this extension on an arbitrary closed 3-manifold, the topology of this manifold plays an essential role. Thus, we give the classification of projectively Anosov flows on $T^3$. In this case, the only flows on $T^2$ which extend to $T^3$ (in the above way) are the linear flows.
LA - eng
KW - projectively Anosov flows; stable foliations; bi-contact structures
UR - http://eudml.org/doc/75466
ER -

References

top
  1. [1] C. CAMACHO, A. LINS NETO, Geometric theory of foliations, Translated from the Portuguese, Birkhäuser Boston, Inc., Boston, Mass., 1985. Zbl0568.57002MR87a:57029
  2. [2] E.A. CODDINGTON, N. LEVINSON, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. Zbl0064.33002MR16,1022b
  3. [3] A. DENJOY, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math., 9, vol. 11 (1932), 333-375. Zbl58.1124.04JFM58.1124.04
  4. [4] Y. ELIASHBERG, W.P. THURSTON, Confoliations, University Lecture Series 13, Amer. Math. Soc. Providence, RI, 1998. Zbl0893.53001MR98m:53042
  5. [5] E. GHYS, Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup., 4, 20 (1987), 251-270. Zbl0663.58025MR89h:58153
  6. [6] E. GHYS, Déformations de flots d'Anosov et de groupes fuchsiens, Ann. Inst. Fourier, 42, 1-2 (1992), 209-247. Zbl0759.58036MR93j:58111
  7. [7] E. GHYS, Rigidité différentiable des groupes fuchsiens, I.H.E.S. Publ. Math., 78 (1993), 163-185. Zbl0812.58066MR95d:57009
  8. [8] H. IMANISHI, On the theorem of Denjoy-Sacksteder for codimension one foliations without holonomy, J. Math. Kyoto Univ., 14 (1974), 607-634. Zbl0296.57006MR51 #4270
  9. [9] G. LEVITT, Feuilletages des variétés de dimension 3 qui sont des fibrés en cercles, Comment. Math. Helv., 53, n°4 (1978), 572-594. Zbl0393.57004MR80c:57017
  10. [10] Y. MITSUMATSU, Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier, 45, n°5 (1995), 1407-1421. Zbl0834.53031MR96m:53029
  11. [11] Y. MITSUMATSU, Projectively Anosov flows and bi-contact structures on 3-manifolds, preprint in preparation. 
  12. [12] R. MOUSSU, R. ROUSSARIE, Relations de conjugaison et de cobordisme entre certains feuilletages, I.H.E.S. Publ. Math., 43 (1974), 142-168. Zbl0356.57018
  13. [13] T. NODA, T. TSUBOI, Regular projectively Anosov flows without compact leaves, preprint in preparation. Zbl1002.37016
  14. [14] S.P. NOVIKOV, The topology of foliations, Trudy Moskov. Mat. Ob., 14 (1965), 248-278; A.M.S. Transl. (1967), 286-304. Zbl0247.57006MR34 #824
  15. [15] R. ROUSSARIE, Plongements dans les variétés feuilletées et classification de feuilletages sans holonomie, I.H.E.S. Publ. Math., 43 (1974), 101-141. Zbl0356.57017MR50 #11268
  16. [16] S. STERNBERG, Local Cn transformations of the real line, Duke Math. J., 24 (1957), 97-102. Zbl0077.06201MR21 #1371
  17. [17] I. TAMURA, Topology of foliations: an introduction, Translated from the 1976 Japanese edition, Translation of Mathematical Monographs 97, American Mathematical Society, Providence, RI, 1992. Zbl0742.57001MR93c:57021
  18. [18] I. TAMURA, A. SATO, On transverse foliations, I.H.E.S. Publ. Math., 54 (1981), 205-235. Zbl0484.57016MR83k:57022
  19. [19] W.P. THURSTON, Foliations of 3-manifolds which are circle bundles, PhD. Thesis, UC Berkeley (1972). 
  20. [20] J.-C. YOCCOZ, Centralisateurs et conjugaison différentiable des difféomorphismes du cercle, Thèse, Univ. Paris-Sud, 1985. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.