Projectively Anosov flows with differentiable (un)stable foliations
Annales de l'institut Fourier (2000)
- Volume: 50, Issue: 5, page 1617-1647
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNoda, Takeo. "Projectively Anosov flows with differentiable (un)stable foliations." Annales de l'institut Fourier 50.5 (2000): 1617-1647. <http://eudml.org/doc/75466>.
@article{Noda2000,
abstract = {We consider projectively Anosov flows with differentiable stable and unstable foliations. We characterize the flows on $T^2$ which can be extended on a neighbourhood of $T^2$ into a projectively Anosov flow so that $T^2$ is a compact leaf of the stable foliation. Furthermore, to realize this extension on an arbitrary closed 3-manifold, the topology of this manifold plays an essential role. Thus, we give the classification of projectively Anosov flows on $T^3$. In this case, the only flows on $T^2$ which extend to $T^3$ (in the above way) are the linear flows.},
author = {Noda, Takeo},
journal = {Annales de l'institut Fourier},
keywords = {projectively Anosov flows; stable foliations; bi-contact structures},
language = {eng},
number = {5},
pages = {1617-1647},
publisher = {Association des Annales de l'Institut Fourier},
title = {Projectively Anosov flows with differentiable (un)stable foliations},
url = {http://eudml.org/doc/75466},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Noda, Takeo
TI - Projectively Anosov flows with differentiable (un)stable foliations
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 5
SP - 1617
EP - 1647
AB - We consider projectively Anosov flows with differentiable stable and unstable foliations. We characterize the flows on $T^2$ which can be extended on a neighbourhood of $T^2$ into a projectively Anosov flow so that $T^2$ is a compact leaf of the stable foliation. Furthermore, to realize this extension on an arbitrary closed 3-manifold, the topology of this manifold plays an essential role. Thus, we give the classification of projectively Anosov flows on $T^3$. In this case, the only flows on $T^2$ which extend to $T^3$ (in the above way) are the linear flows.
LA - eng
KW - projectively Anosov flows; stable foliations; bi-contact structures
UR - http://eudml.org/doc/75466
ER -
References
top- [1] C. CAMACHO, A. LINS NETO, Geometric theory of foliations, Translated from the Portuguese, Birkhäuser Boston, Inc., Boston, Mass., 1985. Zbl0568.57002MR87a:57029
- [2] E.A. CODDINGTON, N. LEVINSON, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. Zbl0064.33002MR16,1022b
- [3] A. DENJOY, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math., 9, vol. 11 (1932), 333-375. Zbl58.1124.04JFM58.1124.04
- [4] Y. ELIASHBERG, W.P. THURSTON, Confoliations, University Lecture Series 13, Amer. Math. Soc. Providence, RI, 1998. Zbl0893.53001MR98m:53042
- [5] E. GHYS, Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup., 4, 20 (1987), 251-270. Zbl0663.58025MR89h:58153
- [6] E. GHYS, Déformations de flots d'Anosov et de groupes fuchsiens, Ann. Inst. Fourier, 42, 1-2 (1992), 209-247. Zbl0759.58036MR93j:58111
- [7] E. GHYS, Rigidité différentiable des groupes fuchsiens, I.H.E.S. Publ. Math., 78 (1993), 163-185. Zbl0812.58066MR95d:57009
- [8] H. IMANISHI, On the theorem of Denjoy-Sacksteder for codimension one foliations without holonomy, J. Math. Kyoto Univ., 14 (1974), 607-634. Zbl0296.57006MR51 #4270
- [9] G. LEVITT, Feuilletages des variétés de dimension 3 qui sont des fibrés en cercles, Comment. Math. Helv., 53, n°4 (1978), 572-594. Zbl0393.57004MR80c:57017
- [10] Y. MITSUMATSU, Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier, 45, n°5 (1995), 1407-1421. Zbl0834.53031MR96m:53029
- [11] Y. MITSUMATSU, Projectively Anosov flows and bi-contact structures on 3-manifolds, preprint in preparation.
- [12] R. MOUSSU, R. ROUSSARIE, Relations de conjugaison et de cobordisme entre certains feuilletages, I.H.E.S. Publ. Math., 43 (1974), 142-168. Zbl0356.57018
- [13] T. NODA, T. TSUBOI, Regular projectively Anosov flows without compact leaves, preprint in preparation. Zbl1002.37016
- [14] S.P. NOVIKOV, The topology of foliations, Trudy Moskov. Mat. Ob., 14 (1965), 248-278; A.M.S. Transl. (1967), 286-304. Zbl0247.57006MR34 #824
- [15] R. ROUSSARIE, Plongements dans les variétés feuilletées et classification de feuilletages sans holonomie, I.H.E.S. Publ. Math., 43 (1974), 101-141. Zbl0356.57017MR50 #11268
- [16] S. STERNBERG, Local Cn transformations of the real line, Duke Math. J., 24 (1957), 97-102. Zbl0077.06201MR21 #1371
- [17] I. TAMURA, Topology of foliations: an introduction, Translated from the 1976 Japanese edition, Translation of Mathematical Monographs 97, American Mathematical Society, Providence, RI, 1992. Zbl0742.57001MR93c:57021
- [18] I. TAMURA, A. SATO, On transverse foliations, I.H.E.S. Publ. Math., 54 (1981), 205-235. Zbl0484.57016MR83k:57022
- [19] W.P. THURSTON, Foliations of 3-manifolds which are circle bundles, PhD. Thesis, UC Berkeley (1972).
- [20] J.-C. YOCCOZ, Centralisateurs et conjugaison différentiable des difféomorphismes du cercle, Thèse, Univ. Paris-Sud, 1985.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.