Ergodic theory, semisimple Lie groups and foliations by manifolds of negative curvature
Publications Mathématiques de l'IHÉS (1982)
- Volume: 55, page 37-62
- ISSN: 0073-8301
Access Full Article
topHow to cite
topZimmer, Robert J.. "Ergodic theory, semisimple Lie groups and foliations by manifolds of negative curvature." Publications Mathématiques de l'IHÉS 55 (1982): 37-62. <http://eudml.org/doc/103981>.
@article{Zimmer1982,
author = {Zimmer, Robert J.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {rigidity of ergodic actions of semisimple Lie groups; ergodic measurable foliations in which the leaves are Riemannian symmetric spaces of noncompact type; leaves with variable sectional curvature bounded above by negative constant; Furstenberg boundary; boundary at infinity; asymptotic geodesics in leaf; amenable action; ergodic actions of connected semi-simple Lie groups of rank greater than 1 and without compact factors},
language = {eng},
pages = {37-62},
publisher = {Institut des Hautes Études Scientifiques},
title = {Ergodic theory, semisimple Lie groups and foliations by manifolds of negative curvature},
url = {http://eudml.org/doc/103981},
volume = {55},
year = {1982},
}
TY - JOUR
AU - Zimmer, Robert J.
TI - Ergodic theory, semisimple Lie groups and foliations by manifolds of negative curvature
JO - Publications Mathématiques de l'IHÉS
PY - 1982
PB - Institut des Hautes Études Scientifiques
VL - 55
SP - 37
EP - 62
LA - eng
KW - rigidity of ergodic actions of semisimple Lie groups; ergodic measurable foliations in which the leaves are Riemannian symmetric spaces of noncompact type; leaves with variable sectional curvature bounded above by negative constant; Furstenberg boundary; boundary at infinity; asymptotic geodesics in leaf; amenable action; ergodic actions of connected semi-simple Lie groups of rank greater than 1 and without compact factors
UR - http://eudml.org/doc/103981
ER -
References
top- [1] M. BERGER, P. GAUDUCHON, E. MAZET, Le spectre d'une variété Riemannienne, Lecture Notes in Math., No. 194, New York, Springer-Verlag, 1971. Zbl0223.53034MR43 #8025
- [2] R. L. BISHOP and B. O'NEILL, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49. Zbl0191.52002MR40 #4891
- [3] A. BOREL and J.-P. SERRE, Corners and arithmetic groups, Comm. Math. Helv., 48 (1973), 436-491. Zbl0274.22011MR52 #8337
- [4] A. CONNES, J. FELDMAN, B. WEISS, Amenable equivalence relations are generated by a single transformation, preprint. Zbl0491.28018
- [5] P. EBERLEIN, B. O'NEILL, Visibility manifolds, Pacific J. Math., 46 (1973), 45-109. Zbl0264.53026MR49 #1421
- [6] P. EBERLEIN, Geodesic flows on negatively curved manifolds, I, Annals of Math., 95 (1972), 492-510. Zbl0217.47304MR46 #10024
- [7] P. EBERLEIN, Geodesic flows on negatively curved manifolds, II, Trans. Amer. Math. Soc., 178 (1973), 57-82. Zbl0264.53027MR47 #2636
- [8] P. EBERLEIN, Busemann functions are C2, unpublished.
- [9] J. FELDMAN, C. C. MOORE, Ergodic equivalence relations, cohomology, and von Neumann algebras, I, Trans. Amer. Math. Soc., 234 (1977), 289-324. Zbl0369.22009MR58 #28261a
- [10] J. FELDMAN, P. HAHN, C. C. MOORE, Orbit structure and countable sections for actions of continuous groups, Adv. in Math., 28 (1978), 186-230. Zbl0392.28023MR58 #11217
- [11] H. FURSTENBERG, A Poisson formula for semisimple Lie groups, Annals of Math., 77 (1963), 335-383. Zbl0192.12704MR26 #3820
- [12] P. HALMOS, Ergodic Theory, New York, Chelsea, 1956. Zbl0073.09302MR20 #3958
- [13] E. HEINTZE, H.-C. IMHOF, Geometry of horospheres, J. Diff. Geom., 12 (1977), 481-491. Zbl0434.53038MR80a:53051
- [14] M. HIRSCH, W. THURSTON, Foliated bundles, invariant measures, and flat manifolds, Annals of Math., 101 (1975), 369-390. Zbl0321.57015MR51 #6842
- [15] R. KALLMAN, Certain quotient spaces are countably separated, III, J. Funct. Anal., 22 (1976), 225-241. Zbl0334.22005MR54 #5385
- [16] G. W. MACKEY, Borel structures in groups and their duals, Trans. Amer. Math. Soc., 85 (1957), 134-165. Zbl0082.11201MR19,752b
- [17] G. W. MACKEY, Point realizations of transformation groups, Ill. J. Math., 6 (1962), 327-335. Zbl0178.17203MR26 #1424
- [18] G. W. MACKEY, Ergodic theory and virtual groups, Math. Ann., 166 (1966), 187-207. Zbl0178.38802MR34 #1444
- [19] G. A. MARGULIS, Discrete groups of motions of manifolds of non-positive curvature, Amer. Math. Soc. Translations, 109 (1977), 33-45. Zbl0367.57012
- [20] G. A. MARGULIS, Factor groups of discrete subgroups, Soviet Math. Dokl., 19 (1978), 1145-1149. Zbl0429.20044
- [21] G. A. MARGULIS, Quotient groups of discrete subgroups and measure theory, Funct. Anal. Appl., 12 (1978), 295-305. Zbl0423.28012MR80k:22005
- [22] C. C. MOORE, Compactifications of symmetric spaces, Amer. J. Math., 86 (1964), 201-218. Zbl0156.03202MR28 #5146
- [23] C. C. MOORE, Ergodicity of flows on homogeneous spaces, Amer. J. Math., 88 (1966), 154-178. Zbl0148.37902MR33 #1409
- [24] G. D. MOSTOW, Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Publ. Math. I.H.E.S., 34 (1967), 53-104. Zbl0189.09402MR38 #4679
- [25] G. D. MOSTOW, Strong rigidity of locally symmetric spaces, Annals of Math. Studies, No. 78, Princeton University Press, 1973. Zbl0265.53039MR52 #5874
- [26] D. ORNSTEIN, B. WEISS, Ergodic Theory of amenable group actions, I, Bull. Amer. Math. Soc., 2 (1980), 161. Zbl0427.28018MR80j:28031
- [27] A. RAMSAY, Virtual groups and group actions, Adv. in Math., 6 (1971), 253-322. Zbl0216.14902MR43 #7590
- [28] D. RUELLE, D. SULLIVAN, Currents, flows, and diffeomorphisms, Topology, 14 (1975), 319-327. Zbl0321.58019MR54 #3759
- [29] I. SATAKE, On representations and compactifications of symmetric Riemannian spaces, Annals of Math., 71 (1960), 77-110. Zbl0094.34603MR22 #9546
- [30] C. SERIES, Foliations of polynomial growth are hyperfinite, Israel J. Math., 34 (1979), 245-258. Zbl0436.28015MR82i:28019
- [31] R. J. ZIMMER, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Funct. Anal., 27 (1978), 350-372. Zbl0391.28011MR57 #12775
- [32] R. J. ZIMMER, Hyperfinite factors and amenable ergodic actions, Invent. Math., 41 (1977), 23-31. Zbl0361.46061MR57 #10438
- [33] R. J. ZIMMER, Induced and amenable ergodic actions of Lie groups, Ann. Sci. Ec. Norm. Sup., 11 (1978), 407-428. Zbl0401.22009MR81b:22013
- [34] R. J. ZIMMER, Orbit spaces of unitary representations, ergodic theory, and simple Lie groups, Annals of Math., 106 (1977), 573-588. Zbl0393.22006MR57 #6286
- [35] R. J. ZIMMER, Algebraic topology of ergodic Lie group actions and measurable foliations, preprint.
- [36] R. J. ZIMMER, Strong rigidity for ergodic actions of semisimple Lie groups, Annals of Math., 112 (1980), 511-529. Zbl0468.22011MR82i:22011
- [37] R. J. ZIMMER, Orbit equivalence and rigidity of ergodic actions of Lie groups, Ergodic Theory and Dynamical Systems, 1 (1981), 237-253. Zbl0485.22013MR84a:22019
- [38] R. J. ZIMMER, On the Mostow rigidity theorem and measurable foliations by hyperbolic space, Israel J. Math., to appear. Zbl0554.58035
- [39] R. J. ZIMMER, Curvature of leaves of amenable foliations, American J. Math., to appear. Zbl0527.57015
- [40] D. ANOSOV, Ya. SINAI, Some smooth ergodic systems, Russian Math. Surveys, 22 (1967), 103-67. Zbl0177.42002
- [41] P. EBERLEIN, Lattices in spaces of nonpositive curvature, Annals of Math., 111 (1980), 435-467. Zbl0401.53015MR82m:53040
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.