Ergodic theory, semisimple Lie groups and foliations by manifolds of negative curvature

Robert J. Zimmer

Publications Mathématiques de l'IHÉS (1982)

  • Volume: 55, page 37-62
  • ISSN: 0073-8301

How to cite

top

Zimmer, Robert J.. "Ergodic theory, semisimple Lie groups and foliations by manifolds of negative curvature." Publications Mathématiques de l'IHÉS 55 (1982): 37-62. <http://eudml.org/doc/103981>.

@article{Zimmer1982,
author = {Zimmer, Robert J.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {rigidity of ergodic actions of semisimple Lie groups; ergodic measurable foliations in which the leaves are Riemannian symmetric spaces of noncompact type; leaves with variable sectional curvature bounded above by negative constant; Furstenberg boundary; boundary at infinity; asymptotic geodesics in leaf; amenable action; ergodic actions of connected semi-simple Lie groups of rank greater than 1 and without compact factors},
language = {eng},
pages = {37-62},
publisher = {Institut des Hautes Études Scientifiques},
title = {Ergodic theory, semisimple Lie groups and foliations by manifolds of negative curvature},
url = {http://eudml.org/doc/103981},
volume = {55},
year = {1982},
}

TY - JOUR
AU - Zimmer, Robert J.
TI - Ergodic theory, semisimple Lie groups and foliations by manifolds of negative curvature
JO - Publications Mathématiques de l'IHÉS
PY - 1982
PB - Institut des Hautes Études Scientifiques
VL - 55
SP - 37
EP - 62
LA - eng
KW - rigidity of ergodic actions of semisimple Lie groups; ergodic measurable foliations in which the leaves are Riemannian symmetric spaces of noncompact type; leaves with variable sectional curvature bounded above by negative constant; Furstenberg boundary; boundary at infinity; asymptotic geodesics in leaf; amenable action; ergodic actions of connected semi-simple Lie groups of rank greater than 1 and without compact factors
UR - http://eudml.org/doc/103981
ER -

References

top
  1. [1] M. BERGER, P. GAUDUCHON, E. MAZET, Le spectre d'une variété Riemannienne, Lecture Notes in Math., No. 194, New York, Springer-Verlag, 1971. Zbl0223.53034MR43 #8025
  2. [2] R. L. BISHOP and B. O'NEILL, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49. Zbl0191.52002MR40 #4891
  3. [3] A. BOREL and J.-P. SERRE, Corners and arithmetic groups, Comm. Math. Helv., 48 (1973), 436-491. Zbl0274.22011MR52 #8337
  4. [4] A. CONNES, J. FELDMAN, B. WEISS, Amenable equivalence relations are generated by a single transformation, preprint. Zbl0491.28018
  5. [5] P. EBERLEIN, B. O'NEILL, Visibility manifolds, Pacific J. Math., 46 (1973), 45-109. Zbl0264.53026MR49 #1421
  6. [6] P. EBERLEIN, Geodesic flows on negatively curved manifolds, I, Annals of Math., 95 (1972), 492-510. Zbl0217.47304MR46 #10024
  7. [7] P. EBERLEIN, Geodesic flows on negatively curved manifolds, II, Trans. Amer. Math. Soc., 178 (1973), 57-82. Zbl0264.53027MR47 #2636
  8. [8] P. EBERLEIN, Busemann functions are C2, unpublished. 
  9. [9] J. FELDMAN, C. C. MOORE, Ergodic equivalence relations, cohomology, and von Neumann algebras, I, Trans. Amer. Math. Soc., 234 (1977), 289-324. Zbl0369.22009MR58 #28261a
  10. [10] J. FELDMAN, P. HAHN, C. C. MOORE, Orbit structure and countable sections for actions of continuous groups, Adv. in Math., 28 (1978), 186-230. Zbl0392.28023MR58 #11217
  11. [11] H. FURSTENBERG, A Poisson formula for semisimple Lie groups, Annals of Math., 77 (1963), 335-383. Zbl0192.12704MR26 #3820
  12. [12] P. HALMOS, Ergodic Theory, New York, Chelsea, 1956. Zbl0073.09302MR20 #3958
  13. [13] E. HEINTZE, H.-C. IMHOF, Geometry of horospheres, J. Diff. Geom., 12 (1977), 481-491. Zbl0434.53038MR80a:53051
  14. [14] M. HIRSCH, W. THURSTON, Foliated bundles, invariant measures, and flat manifolds, Annals of Math., 101 (1975), 369-390. Zbl0321.57015MR51 #6842
  15. [15] R. KALLMAN, Certain quotient spaces are countably separated, III, J. Funct. Anal., 22 (1976), 225-241. Zbl0334.22005MR54 #5385
  16. [16] G. W. MACKEY, Borel structures in groups and their duals, Trans. Amer. Math. Soc., 85 (1957), 134-165. Zbl0082.11201MR19,752b
  17. [17] G. W. MACKEY, Point realizations of transformation groups, Ill. J. Math., 6 (1962), 327-335. Zbl0178.17203MR26 #1424
  18. [18] G. W. MACKEY, Ergodic theory and virtual groups, Math. Ann., 166 (1966), 187-207. Zbl0178.38802MR34 #1444
  19. [19] G. A. MARGULIS, Discrete groups of motions of manifolds of non-positive curvature, Amer. Math. Soc. Translations, 109 (1977), 33-45. Zbl0367.57012
  20. [20] G. A. MARGULIS, Factor groups of discrete subgroups, Soviet Math. Dokl., 19 (1978), 1145-1149. Zbl0429.20044
  21. [21] G. A. MARGULIS, Quotient groups of discrete subgroups and measure theory, Funct. Anal. Appl., 12 (1978), 295-305. Zbl0423.28012MR80k:22005
  22. [22] C. C. MOORE, Compactifications of symmetric spaces, Amer. J. Math., 86 (1964), 201-218. Zbl0156.03202MR28 #5146
  23. [23] C. C. MOORE, Ergodicity of flows on homogeneous spaces, Amer. J. Math., 88 (1966), 154-178. Zbl0148.37902MR33 #1409
  24. [24] G. D. MOSTOW, Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Publ. Math. I.H.E.S., 34 (1967), 53-104. Zbl0189.09402MR38 #4679
  25. [25] G. D. MOSTOW, Strong rigidity of locally symmetric spaces, Annals of Math. Studies, No. 78, Princeton University Press, 1973. Zbl0265.53039MR52 #5874
  26. [26] D. ORNSTEIN, B. WEISS, Ergodic Theory of amenable group actions, I, Bull. Amer. Math. Soc., 2 (1980), 161. Zbl0427.28018MR80j:28031
  27. [27] A. RAMSAY, Virtual groups and group actions, Adv. in Math., 6 (1971), 253-322. Zbl0216.14902MR43 #7590
  28. [28] D. RUELLE, D. SULLIVAN, Currents, flows, and diffeomorphisms, Topology, 14 (1975), 319-327. Zbl0321.58019MR54 #3759
  29. [29] I. SATAKE, On representations and compactifications of symmetric Riemannian spaces, Annals of Math., 71 (1960), 77-110. Zbl0094.34603MR22 #9546
  30. [30] C. SERIES, Foliations of polynomial growth are hyperfinite, Israel J. Math., 34 (1979), 245-258. Zbl0436.28015MR82i:28019
  31. [31] R. J. ZIMMER, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Funct. Anal., 27 (1978), 350-372. Zbl0391.28011MR57 #12775
  32. [32] R. J. ZIMMER, Hyperfinite factors and amenable ergodic actions, Invent. Math., 41 (1977), 23-31. Zbl0361.46061MR57 #10438
  33. [33] R. J. ZIMMER, Induced and amenable ergodic actions of Lie groups, Ann. Sci. Ec. Norm. Sup., 11 (1978), 407-428. Zbl0401.22009MR81b:22013
  34. [34] R. J. ZIMMER, Orbit spaces of unitary representations, ergodic theory, and simple Lie groups, Annals of Math., 106 (1977), 573-588. Zbl0393.22006MR57 #6286
  35. [35] R. J. ZIMMER, Algebraic topology of ergodic Lie group actions and measurable foliations, preprint. 
  36. [36] R. J. ZIMMER, Strong rigidity for ergodic actions of semisimple Lie groups, Annals of Math., 112 (1980), 511-529. Zbl0468.22011MR82i:22011
  37. [37] R. J. ZIMMER, Orbit equivalence and rigidity of ergodic actions of Lie groups, Ergodic Theory and Dynamical Systems, 1 (1981), 237-253. Zbl0485.22013MR84a:22019
  38. [38] R. J. ZIMMER, On the Mostow rigidity theorem and measurable foliations by hyperbolic space, Israel J. Math., to appear. Zbl0554.58035
  39. [39] R. J. ZIMMER, Curvature of leaves of amenable foliations, American J. Math., to appear. Zbl0527.57015
  40. [40] D. ANOSOV, Ya. SINAI, Some smooth ergodic systems, Russian Math. Surveys, 22 (1967), 103-67. Zbl0177.42002
  41. [41] P. EBERLEIN, Lattices in spaces of nonpositive curvature, Annals of Math., 111 (1980), 435-467. Zbl0401.53015MR82m:53040

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.