Rigidity of Furstenberg entropy for semisimple Lie group actions
Annales scientifiques de l'École Normale Supérieure (2000)
- Volume: 33, Issue: 3, page 321-343
- ISSN: 0012-9593
Access Full Article
topHow to cite
topNevo, Amos, and Zimmer, Robert J.. "Rigidity of Furstenberg entropy for semisimple Lie group actions." Annales scientifiques de l'École Normale Supérieure 33.3 (2000): 321-343. <http://eudml.org/doc/82518>.
@article{Nevo2000,
author = {Nevo, Amos, Zimmer, Robert J.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {semisimple Lie group; Furstenberg entropy; stationary measures; parabolic subgroups; rigidity},
language = {eng},
number = {3},
pages = {321-343},
publisher = {Elsevier},
title = {Rigidity of Furstenberg entropy for semisimple Lie group actions},
url = {http://eudml.org/doc/82518},
volume = {33},
year = {2000},
}
TY - JOUR
AU - Nevo, Amos
AU - Zimmer, Robert J.
TI - Rigidity of Furstenberg entropy for semisimple Lie group actions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 3
SP - 321
EP - 343
LA - eng
KW - semisimple Lie group; Furstenberg entropy; stationary measures; parabolic subgroups; rigidity
UR - http://eudml.org/doc/82518
ER -
References
top- [1] BOUGEROL P., LACROIX J., Products of Random Matrices with Applications to Random Schrödinger Operators, Birkhäuser, Boston, 1985. Zbl0572.60001
- [2] FURSTENBERG H., A Poisson formula for semi-simple Lie groups, Annals of Math. 77 (2) (1963) 335-386. Zbl0192.12704MR26 #3820
- [3] FURSTENBERG H., Non commuting random products, Trans. Amer. Math. Soc. 108 (1963) 377-428. Zbl0203.19102MR29 #648
- [4] FURSTENBERG H., Random walks and discrete subgroups of Lie groups, in : Advances in Probability, Vol. 1, Dekker, New York, 1970, pp. 3-63. Zbl0221.22008
- [5] FURSTENBERG H., Boundary theory and stochastic processes on homogeneous spaces, Proc. Symp. Pure Math. 26 (1974) 193-226. Zbl0289.22011MR50 #4815
- [6] FURSTENBERG H., Random walks on Lie groups, in : Wolf J.A., de Wilde M. (Eds.), Harmonic Analysis and Representations of Semi-Simple Lie Groups, D. Reidel, Dordrecht, 1980, pp. 467-489. Zbl0466.60008
- [7] FERES R., LABOURIE F., Topological superrigidity and applications to Anosov actions, Ann. Sci. Éc. Norm. Sup. 31 (1998) 599-629. Zbl0915.58072MR99k:58112
- [8] GUIVARC'H Y., RAUGI A., Propriétés de contraction d'un semi-groupe de matrices inversible. Coefficients de Liapunoff d'un produit de matrices aléatoires indépendantes, Israel J. Math. 65 (1989) 165-197. Zbl0677.60007MR91b:22006
- [9] KAIMANOVICH V.A., VERSHIK A., Random walks on discrete groups : Boundary and entropy, Ann. Probab. 11 (3) (1983) 457-490. Zbl0641.60009MR85d:60024
- [10] LUBOTZKY A., Free quotients and the first Betti number of some hyperbolic manifolds, Transform. Groups 1 (1996) 71-82. Zbl0876.22015MR97d:57016
- [11] LUBOTZKY A., ZIMMER R.J., Arithmetic structure of fundamental groups and actions of semi-simple groups, Topology, to appear. Zbl0985.22005
- [12] MARGULIS G.A., Discrete Subgroups of Semisimple Lie Groups, A Series of Modern Surveys in Mathematics, Vol. 17, Springer, 1991. Zbl0732.22008MR92h:22021
- [13] NEVO A., Group actions with positive Furstenberg entropy, Preprint. Zbl0956.22005
- [14] NEVO A., ZIMMER R.J., Homogeneous projective factors for actions of semisimple Lie groups, Invent. Math. 138 (1999) 229-252. Zbl0936.22007MR2000h:22006
- [15] NEVO A., ZIMMER R.J., A generalization of the intermediate factor theorem, Preprint. Zbl1015.22002
- [16] NEVO A., ZIMMER R.J., Random invariants, algebraic hulls, and projective quotients for semisimple Lie group actions, Preprint.
- [17] ZIMMER R.J., Ergodic theory, semi-simple Lie groups, and foliations by manifolds of negative curvature, Publ. Math. IHES 55 (1982) 37-62. Zbl0525.57022MR84h:22022
- [18] ZIMMER R.J., Induced and amenable actions of Lie groups, Ann. Sci. Éc. Norm. Sup. 11 (1978) 407-428. Zbl0401.22009MR81b:22013
- [19] ZIMMER R.J., On the cohomology of ergodic group actions, Israel J. Math. 35 (4) (1980) 289-300. Zbl0442.28026MR81m:22011
- [20] ZIMMER R.J., Ergodic Theory and Semisimple Groups, Birkhäuser, Boston, 1984. Zbl0571.58015MR86j:22014
- [21] ZIMMER R.J., Representations of fundamental groups of manifolds with a semisimple transformation group, J. Amer. Math. Soc. 2 (1989) 201-213. Zbl0676.57017MR90i:22021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.