Rigidity of Furstenberg entropy for semisimple Lie group actions

Amos Nevo; Robert J. Zimmer

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 3, page 321-343
  • ISSN: 0012-9593

How to cite

top

Nevo, Amos, and Zimmer, Robert J.. "Rigidity of Furstenberg entropy for semisimple Lie group actions." Annales scientifiques de l'École Normale Supérieure 33.3 (2000): 321-343. <http://eudml.org/doc/82518>.

@article{Nevo2000,
author = {Nevo, Amos, Zimmer, Robert J.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {semisimple Lie group; Furstenberg entropy; stationary measures; parabolic subgroups; rigidity},
language = {eng},
number = {3},
pages = {321-343},
publisher = {Elsevier},
title = {Rigidity of Furstenberg entropy for semisimple Lie group actions},
url = {http://eudml.org/doc/82518},
volume = {33},
year = {2000},
}

TY - JOUR
AU - Nevo, Amos
AU - Zimmer, Robert J.
TI - Rigidity of Furstenberg entropy for semisimple Lie group actions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 3
SP - 321
EP - 343
LA - eng
KW - semisimple Lie group; Furstenberg entropy; stationary measures; parabolic subgroups; rigidity
UR - http://eudml.org/doc/82518
ER -

References

top
  1. [1] BOUGEROL P., LACROIX J., Products of Random Matrices with Applications to Random Schrödinger Operators, Birkhäuser, Boston, 1985. Zbl0572.60001
  2. [2] FURSTENBERG H., A Poisson formula for semi-simple Lie groups, Annals of Math. 77 (2) (1963) 335-386. Zbl0192.12704MR26 #3820
  3. [3] FURSTENBERG H., Non commuting random products, Trans. Amer. Math. Soc. 108 (1963) 377-428. Zbl0203.19102MR29 #648
  4. [4] FURSTENBERG H., Random walks and discrete subgroups of Lie groups, in : Advances in Probability, Vol. 1, Dekker, New York, 1970, pp. 3-63. Zbl0221.22008
  5. [5] FURSTENBERG H., Boundary theory and stochastic processes on homogeneous spaces, Proc. Symp. Pure Math. 26 (1974) 193-226. Zbl0289.22011MR50 #4815
  6. [6] FURSTENBERG H., Random walks on Lie groups, in : Wolf J.A., de Wilde M. (Eds.), Harmonic Analysis and Representations of Semi-Simple Lie Groups, D. Reidel, Dordrecht, 1980, pp. 467-489. Zbl0466.60008
  7. [7] FERES R., LABOURIE F., Topological superrigidity and applications to Anosov actions, Ann. Sci. Éc. Norm. Sup. 31 (1998) 599-629. Zbl0915.58072MR99k:58112
  8. [8] GUIVARC'H Y., RAUGI A., Propriétés de contraction d'un semi-groupe de matrices inversible. Coefficients de Liapunoff d'un produit de matrices aléatoires indépendantes, Israel J. Math. 65 (1989) 165-197. Zbl0677.60007MR91b:22006
  9. [9] KAIMANOVICH V.A., VERSHIK A., Random walks on discrete groups : Boundary and entropy, Ann. Probab. 11 (3) (1983) 457-490. Zbl0641.60009MR85d:60024
  10. [10] LUBOTZKY A., Free quotients and the first Betti number of some hyperbolic manifolds, Transform. Groups 1 (1996) 71-82. Zbl0876.22015MR97d:57016
  11. [11] LUBOTZKY A., ZIMMER R.J., Arithmetic structure of fundamental groups and actions of semi-simple groups, Topology, to appear. Zbl0985.22005
  12. [12] MARGULIS G.A., Discrete Subgroups of Semisimple Lie Groups, A Series of Modern Surveys in Mathematics, Vol. 17, Springer, 1991. Zbl0732.22008MR92h:22021
  13. [13] NEVO A., Group actions with positive Furstenberg entropy, Preprint. Zbl0956.22005
  14. [14] NEVO A., ZIMMER R.J., Homogeneous projective factors for actions of semisimple Lie groups, Invent. Math. 138 (1999) 229-252. Zbl0936.22007MR2000h:22006
  15. [15] NEVO A., ZIMMER R.J., A generalization of the intermediate factor theorem, Preprint. Zbl1015.22002
  16. [16] NEVO A., ZIMMER R.J., Random invariants, algebraic hulls, and projective quotients for semisimple Lie group actions, Preprint. 
  17. [17] ZIMMER R.J., Ergodic theory, semi-simple Lie groups, and foliations by manifolds of negative curvature, Publ. Math. IHES 55 (1982) 37-62. Zbl0525.57022MR84h:22022
  18. [18] ZIMMER R.J., Induced and amenable actions of Lie groups, Ann. Sci. Éc. Norm. Sup. 11 (1978) 407-428. Zbl0401.22009MR81b:22013
  19. [19] ZIMMER R.J., On the cohomology of ergodic group actions, Israel J. Math. 35 (4) (1980) 289-300. Zbl0442.28026MR81m:22011
  20. [20] ZIMMER R.J., Ergodic Theory and Semisimple Groups, Birkhäuser, Boston, 1984. Zbl0571.58015MR86j:22014
  21. [21] ZIMMER R.J., Representations of fundamental groups of manifolds with a semisimple transformation group, J. Amer. Math. Soc. 2 (1989) 201-213. Zbl0676.57017MR90i:22021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.