Contributions of rational homotopy theory to global problems in geometry
Karsten Grove; Stephen Halperin
Publications Mathématiques de l'IHÉS (1982)
- Volume: 56, page 171-177
- ISSN: 0073-8301
Access Full Article
topHow to cite
topGrove, Karsten, and Halperin, Stephen. "Contributions of rational homotopy theory to global problems in geometry." Publications Mathématiques de l'IHÉS 56 (1982): 171-177. <http://eudml.org/doc/103986>.
@article{Grove1982,
author = {Grove, Karsten, Halperin, Stephen},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {manifolds of cohomogeneity 1; rationally hyperbolic manifold; isometry- invariant geodesics; rationally elliptic manifolds},
language = {eng},
pages = {171-177},
publisher = {Institut des Hautes Études Scientifiques},
title = {Contributions of rational homotopy theory to global problems in geometry},
url = {http://eudml.org/doc/103986},
volume = {56},
year = {1982},
}
TY - JOUR
AU - Grove, Karsten
AU - Halperin, Stephen
TI - Contributions of rational homotopy theory to global problems in geometry
JO - Publications Mathématiques de l'IHÉS
PY - 1982
PB - Institut des Hautes Études Scientifiques
VL - 56
SP - 171
EP - 177
LA - eng
KW - manifolds of cohomogeneity 1; rationally hyperbolic manifold; isometry- invariant geodesics; rationally elliptic manifolds
UR - http://eudml.org/doc/103986
ER -
References
top- [1] I. K. BABENKO, On analytic properties of the Poincaré series of loop spaces, Math. Zametki, 27 (1980), 751-765. Zbl0447.55007MR81h:55005
- [2] J. BARGE, Structures différentiables sur les types d'homotopie rationnelle simplement connexes, Ann. Scient. Éc. Norm. Sup., 9 (1976), 469-501. Zbl0348.57016MR55 #13448
- [3] M. BERGER, R. BOTT, Sur les variétés à courbure strictement positive, Topology, 1 (1962), 301-311. Zbl0112.13604MR26 #4296
- [4] Y. FELIX, S. HALPERIN, Rational Lusternik-Schnirelmann category and its applications, Trans. Amer. Math. Soc., 273 (1982), 1-37. Zbl0508.55004MR84h:55011
- [5] Y. FELIX, S. HALPERIN, J. C. THOMAS, The homotopy Lie algebra for finite complexes, Publ. Math. I.H.E.S., ce volume, 179-202. Zbl0504.55005MR85c:55010
- [6] Y. FELIX, J. C. THOMAS, The radius of convergence of Poincaré series of loop spaces, Invent. math., 68 (1982), 257-274. Zbl0476.55016MR84f:55007
- [7] J. B. FRIEDLANDER, S. HALPERIN, Rational homotopy groups of certain spaces, Invent. math., 53 (1979), 117-133. Zbl0396.55010MR81f:55006b
- [8] M. GROMOV, Curvature, diameter and Betti numbers, Comment. Math. Helv., 56 (1981), 179-195. Zbl0467.53021MR82k:53062
- [9] K. GROVE, Condition (C) for the energy integral on certain path-spaces and applications to the theory of geodesics, J. Differential Geometry, 8 (1973), 207-223. Zbl0277.58004MR49 #4030
- [10] K. GROVE, Isometry-invariant Geodesics, Topology, 13 (1974), 281-292. Zbl0289.58007MR51 #6877
- [11] K. GROVE, S. HALPERIN, M. VIGUÉ-POIRRIER, The rational homotopy theory of certain path-spaces with applications to geodesics, Acta math., 140 (1978), 277-303. Zbl0421.58007MR80g:58024
- [12] K. GROVE, M. TANAKA, On the number of invariant closed geodesics, Acta math., 140 (1978), 33-48. Zbl0375.58010MR56 #16678
- [13] S. HALPERIN, Finiteness in the minimal model of Sullivan, Trans. Amer. Math. Soc., 230 (1977), 173-199. Zbl0364.55014MR57 #1493
- [14] S. HALPERIN, Spaces whose rational homotopy and ψ-homotopy are both finite dimensional, to appear. Zbl0546.55015
- [15] H. HERNÁNDEZ-ANDRADE, A class of compact manifolds with positive Ricci curvature, Proc. symp. pure math. A.M.S., XXVII (1975), 73-87. Zbl0325.53041MR52 #1565
- [16] J. MILNOR, Singular points of complex hypersurfaces, Annals of math. studies, 61 (1968), Princeton. Zbl0184.48405MR39 #969
- [17] S. B. MYERS, N. STEENROD, The group of isometries of a Riemannian manifold, Ann. of Math., 40 (1939), 400-416. Zbl0021.06303JFM65.1415.03
- [18] D. QUILLEN, Rational homotopy theory, Ann. of Math., 90 (1969), 205-295. Zbl0191.53702MR41 #2678
- [19] D. SULLIVAN, Infinitesimal computations in topology, Publ. Math. I.H.E.S., 47 (1978), 269-331. Zbl0374.57002MR58 #31119
- [20] M. TANAKA, On the existence of infinitely many isometry-invariant geodesics, J. Differential Geometry, 17 (1982), 171-184. Zbl0499.53041MR83h:53060
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.