Contributions of rational homotopy theory to global problems in geometry

Karsten Grove; Stephen Halperin

Publications Mathématiques de l'IHÉS (1982)

  • Volume: 56, page 171-177
  • ISSN: 0073-8301

How to cite

top

Grove, Karsten, and Halperin, Stephen. "Contributions of rational homotopy theory to global problems in geometry." Publications Mathématiques de l'IHÉS 56 (1982): 171-177. <http://eudml.org/doc/103986>.

@article{Grove1982,
author = {Grove, Karsten, Halperin, Stephen},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {manifolds of cohomogeneity 1; rationally hyperbolic manifold; isometry- invariant geodesics; rationally elliptic manifolds},
language = {eng},
pages = {171-177},
publisher = {Institut des Hautes Études Scientifiques},
title = {Contributions of rational homotopy theory to global problems in geometry},
url = {http://eudml.org/doc/103986},
volume = {56},
year = {1982},
}

TY - JOUR
AU - Grove, Karsten
AU - Halperin, Stephen
TI - Contributions of rational homotopy theory to global problems in geometry
JO - Publications Mathématiques de l'IHÉS
PY - 1982
PB - Institut des Hautes Études Scientifiques
VL - 56
SP - 171
EP - 177
LA - eng
KW - manifolds of cohomogeneity 1; rationally hyperbolic manifold; isometry- invariant geodesics; rationally elliptic manifolds
UR - http://eudml.org/doc/103986
ER -

References

top
  1. [1] I. K. BABENKO, On analytic properties of the Poincaré series of loop spaces, Math. Zametki, 27 (1980), 751-765. Zbl0447.55007MR81h:55005
  2. [2] J. BARGE, Structures différentiables sur les types d'homotopie rationnelle simplement connexes, Ann. Scient. Éc. Norm. Sup., 9 (1976), 469-501. Zbl0348.57016MR55 #13448
  3. [3] M. BERGER, R. BOTT, Sur les variétés à courbure strictement positive, Topology, 1 (1962), 301-311. Zbl0112.13604MR26 #4296
  4. [4] Y. FELIX, S. HALPERIN, Rational Lusternik-Schnirelmann category and its applications, Trans. Amer. Math. Soc., 273 (1982), 1-37. Zbl0508.55004MR84h:55011
  5. [5] Y. FELIX, S. HALPERIN, J. C. THOMAS, The homotopy Lie algebra for finite complexes, Publ. Math. I.H.E.S., ce volume, 179-202. Zbl0504.55005MR85c:55010
  6. [6] Y. FELIX, J. C. THOMAS, The radius of convergence of Poincaré series of loop spaces, Invent. math., 68 (1982), 257-274. Zbl0476.55016MR84f:55007
  7. [7] J. B. FRIEDLANDER, S. HALPERIN, Rational homotopy groups of certain spaces, Invent. math., 53 (1979), 117-133. Zbl0396.55010MR81f:55006b
  8. [8] M. GROMOV, Curvature, diameter and Betti numbers, Comment. Math. Helv., 56 (1981), 179-195. Zbl0467.53021MR82k:53062
  9. [9] K. GROVE, Condition (C) for the energy integral on certain path-spaces and applications to the theory of geodesics, J. Differential Geometry, 8 (1973), 207-223. Zbl0277.58004MR49 #4030
  10. [10] K. GROVE, Isometry-invariant Geodesics, Topology, 13 (1974), 281-292. Zbl0289.58007MR51 #6877
  11. [11] K. GROVE, S. HALPERIN, M. VIGUÉ-POIRRIER, The rational homotopy theory of certain path-spaces with applications to geodesics, Acta math., 140 (1978), 277-303. Zbl0421.58007MR80g:58024
  12. [12] K. GROVE, M. TANAKA, On the number of invariant closed geodesics, Acta math., 140 (1978), 33-48. Zbl0375.58010MR56 #16678
  13. [13] S. HALPERIN, Finiteness in the minimal model of Sullivan, Trans. Amer. Math. Soc., 230 (1977), 173-199. Zbl0364.55014MR57 #1493
  14. [14] S. HALPERIN, Spaces whose rational homotopy and ψ-homotopy are both finite dimensional, to appear. Zbl0546.55015
  15. [15] H. HERNÁNDEZ-ANDRADE, A class of compact manifolds with positive Ricci curvature, Proc. symp. pure math. A.M.S., XXVII (1975), 73-87. Zbl0325.53041MR52 #1565
  16. [16] J. MILNOR, Singular points of complex hypersurfaces, Annals of math. studies, 61 (1968), Princeton. Zbl0184.48405MR39 #969
  17. [17] S. B. MYERS, N. STEENROD, The group of isometries of a Riemannian manifold, Ann. of Math., 40 (1939), 400-416. Zbl0021.06303JFM65.1415.03
  18. [18] D. QUILLEN, Rational homotopy theory, Ann. of Math., 90 (1969), 205-295. Zbl0191.53702MR41 #2678
  19. [19] D. SULLIVAN, Infinitesimal computations in topology, Publ. Math. I.H.E.S., 47 (1978), 269-331. Zbl0374.57002MR58 #31119
  20. [20] M. TANAKA, On the existence of infinitely many isometry-invariant geodesics, J. Differential Geometry, 17 (1982), 171-184. Zbl0499.53041MR83h:53060

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.