The homotopy Lie algebra for finite complexes

Yves Félix; Stephen Halperin; Jean-Claude Thomas

Publications Mathématiques de l'IHÉS (1982)

  • Volume: 56, page 179-202
  • ISSN: 0073-8301

How to cite

top

Félix, Yves, Halperin, Stephen, and Thomas, Jean-Claude. "The homotopy Lie algebra for finite complexes." Publications Mathématiques de l'IHÉS 56 (1982): 179-202. <http://eudml.org/doc/103987>.

@article{Félix1982,
author = {Félix, Yves, Halperin, Stephen, Thomas, Jean-Claude},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {simply connected CW complexes whose rational homology is finite dimensional in each degree; rational homotopy Lie algebra of a space; Lusternik-Schnirelmann category of the localization; free sub Lie algebra on two homogeneous generators},
language = {eng},
pages = {179-202},
publisher = {Institut des Hautes Études Scientifiques},
title = {The homotopy Lie algebra for finite complexes},
url = {http://eudml.org/doc/103987},
volume = {56},
year = {1982},
}

TY - JOUR
AU - Félix, Yves
AU - Halperin, Stephen
AU - Thomas, Jean-Claude
TI - The homotopy Lie algebra for finite complexes
JO - Publications Mathématiques de l'IHÉS
PY - 1982
PB - Institut des Hautes Études Scientifiques
VL - 56
SP - 179
EP - 202
LA - eng
KW - simply connected CW complexes whose rational homology is finite dimensional in each degree; rational homotopy Lie algebra of a space; Lusternik-Schnirelmann category of the localization; free sub Lie algebra on two homogeneous generators
UR - http://eudml.org/doc/103987
ER -

References

top
  1. [A-A] P. ANDREWS, M. ARKOWITZ, Sullivan's minimal models and higher order Whitehead products, Can. J. Math., XXX, n° 5 (1978), 961-982. Zbl0441.55012MR80b:55008
  2. [A1] L. AVRAMOV, Free Lie subalgebras of the cohomology of local rings, Trans. A.M.S., 270 (1982), 589-608. Zbl0516.13022MR83g:13010
  3. [A2] L. AVRAMOV, Differential graded models for local rings, to appear. Zbl0509.13010
  4. [BG] A. K. BOUSFIELD, V. K. A. M. GUGENHEIM, On the P.L. de Rham theory and rational homotopy type, Memoirs A.M.S., 179 (1976). Zbl0338.55008MR54 #13906
  5. [CE] H. CARTAN, S. EILENBERG, Homological Algebra, Princeton University Press, n° 19 (1956). Zbl0075.24305MR17,1040e
  6. [F] Y. FELIX, Modèles bifiltrés : une plaque tournante en homotopie rationnelle, Can. J. Math., 23 (n° 26) (1981), 1448-1458. Zbl0489.55008MR83i:55013
  7. [F-H] Y. FELIX, S. HALPERIN, Rational LS category and its applications, Trans. A.M.S., 273 (1982), 1-38. Zbl0508.55004MR84h:55011
  8. [F-T] Y. FELIX, J. C. THOMAS, Radius of convergence of Poincaré series of loop spaces, Invent. Math., 68 (1982), 257-274. Zbl0476.55016MR84f:55007
  9. [Fr-H] J. FRIEDLANDER, S. HALPERIN, An arithmetic characterization of the rational homotopy groups of certain spaces, Invent. Math., 53 (1979), 117-138. Zbl0396.55010MR81f:55006b
  10. [Ga] T. GANEA, Lusternik-Schnirelmann category and cocategory, Proc. London Math. Soc., 10 (1960), 623-639. Zbl0101.15802MR23 #A3574
  11. [Gu] T. GULLIKSEN, A homological characterization of local complete intersections, Compositio mathematica, 23 (3) (1971), 251-255. Zbl0218.13028MR46 #168
  12. [H1] S. HALPERIN, Finiteness in the minimal models of Sullivan, Trans. A.M.S., 230 (1977), 173-199. Zbl0364.55014MR57 #1493
  13. [H2] S. HALPERIN, Spaces whose rational homology and ψ-homotopy is finite dimensional, to appear. Zbl0546.55015
  14. [H3] S. HALPERIN, Lectures on minimal models, Publication I.R.M.A., Vol. 3, Fasc. 4 (1981), third edition. Zbl0505.55014MR83j:55008
  15. [L] J.-M. LEMAIRE, Algèbres connexes et homologie des espaces de lacets, Springer Lecture Notes, 422 (1974). Zbl0293.55004MR51 #6793
  16. [L-S] J.-M. LEMAIRE, F. SIGRIST, Sur les invariants d'homotopie rationnelle liés à la LS catégorie, Comment. Math. Helvetici (56) (1981), 103-122. Zbl0479.55008MR82g:55009
  17. [Q] D. QUILLEN, Rational homotopy theory, Ann. of Math., 90 (1969), 205-295. Zbl0191.53702MR41 #2678
  18. [R] J. E. ROOS, Relations between the Poincaré-Betti series of loop spaces and of local rings, Springer Lecture Notes, 740, 285-322. Zbl0415.13012MR81g:55019
  19. [S] D. SULLIVAN, Infinitesimal computations in topology, Publ. Math. I.H.E.S., 47 (1978), 269-331. Zbl0374.57002MR58 #31119

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.