The homotopy Lie algebra for finite complexes
Yves Félix; Stephen Halperin; Jean-Claude Thomas
Publications Mathématiques de l'IHÉS (1982)
- Volume: 56, page 179-202
- ISSN: 0073-8301
Access Full Article
topHow to cite
topFélix, Yves, Halperin, Stephen, and Thomas, Jean-Claude. "The homotopy Lie algebra for finite complexes." Publications Mathématiques de l'IHÉS 56 (1982): 179-202. <http://eudml.org/doc/103987>.
@article{Félix1982,
author = {Félix, Yves, Halperin, Stephen, Thomas, Jean-Claude},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {simply connected CW complexes whose rational homology is finite dimensional in each degree; rational homotopy Lie algebra of a space; Lusternik-Schnirelmann category of the localization; free sub Lie algebra on two homogeneous generators},
language = {eng},
pages = {179-202},
publisher = {Institut des Hautes Études Scientifiques},
title = {The homotopy Lie algebra for finite complexes},
url = {http://eudml.org/doc/103987},
volume = {56},
year = {1982},
}
TY - JOUR
AU - Félix, Yves
AU - Halperin, Stephen
AU - Thomas, Jean-Claude
TI - The homotopy Lie algebra for finite complexes
JO - Publications Mathématiques de l'IHÉS
PY - 1982
PB - Institut des Hautes Études Scientifiques
VL - 56
SP - 179
EP - 202
LA - eng
KW - simply connected CW complexes whose rational homology is finite dimensional in each degree; rational homotopy Lie algebra of a space; Lusternik-Schnirelmann category of the localization; free sub Lie algebra on two homogeneous generators
UR - http://eudml.org/doc/103987
ER -
References
top- [A-A] P. ANDREWS, M. ARKOWITZ, Sullivan's minimal models and higher order Whitehead products, Can. J. Math., XXX, n° 5 (1978), 961-982. Zbl0441.55012MR80b:55008
- [A1] L. AVRAMOV, Free Lie subalgebras of the cohomology of local rings, Trans. A.M.S., 270 (1982), 589-608. Zbl0516.13022MR83g:13010
- [A2] L. AVRAMOV, Differential graded models for local rings, to appear. Zbl0509.13010
- [BG] A. K. BOUSFIELD, V. K. A. M. GUGENHEIM, On the P.L. de Rham theory and rational homotopy type, Memoirs A.M.S., 179 (1976). Zbl0338.55008MR54 #13906
- [CE] H. CARTAN, S. EILENBERG, Homological Algebra, Princeton University Press, n° 19 (1956). Zbl0075.24305MR17,1040e
- [F] Y. FELIX, Modèles bifiltrés : une plaque tournante en homotopie rationnelle, Can. J. Math., 23 (n° 26) (1981), 1448-1458. Zbl0489.55008MR83i:55013
- [F-H] Y. FELIX, S. HALPERIN, Rational LS category and its applications, Trans. A.M.S., 273 (1982), 1-38. Zbl0508.55004MR84h:55011
- [F-T] Y. FELIX, J. C. THOMAS, Radius of convergence of Poincaré series of loop spaces, Invent. Math., 68 (1982), 257-274. Zbl0476.55016MR84f:55007
- [Fr-H] J. FRIEDLANDER, S. HALPERIN, An arithmetic characterization of the rational homotopy groups of certain spaces, Invent. Math., 53 (1979), 117-138. Zbl0396.55010MR81f:55006b
- [Ga] T. GANEA, Lusternik-Schnirelmann category and cocategory, Proc. London Math. Soc., 10 (1960), 623-639. Zbl0101.15802MR23 #A3574
- [Gu] T. GULLIKSEN, A homological characterization of local complete intersections, Compositio mathematica, 23 (3) (1971), 251-255. Zbl0218.13028MR46 #168
- [H1] S. HALPERIN, Finiteness in the minimal models of Sullivan, Trans. A.M.S., 230 (1977), 173-199. Zbl0364.55014MR57 #1493
- [H2] S. HALPERIN, Spaces whose rational homology and ψ-homotopy is finite dimensional, to appear. Zbl0546.55015
- [H3] S. HALPERIN, Lectures on minimal models, Publication I.R.M.A., Vol. 3, Fasc. 4 (1981), third edition. Zbl0505.55014MR83j:55008
- [L] J.-M. LEMAIRE, Algèbres connexes et homologie des espaces de lacets, Springer Lecture Notes, 422 (1974). Zbl0293.55004MR51 #6793
- [L-S] J.-M. LEMAIRE, F. SIGRIST, Sur les invariants d'homotopie rationnelle liés à la LS catégorie, Comment. Math. Helvetici (56) (1981), 103-122. Zbl0479.55008MR82g:55009
- [Q] D. QUILLEN, Rational homotopy theory, Ann. of Math., 90 (1969), 205-295. Zbl0191.53702MR41 #2678
- [R] J. E. ROOS, Relations between the Poincaré-Betti series of loop spaces and of local rings, Springer Lecture Notes, 740, 285-322. Zbl0415.13012MR81g:55019
- [S] D. SULLIVAN, Infinitesimal computations in topology, Publ. Math. I.H.E.S., 47 (1978), 269-331. Zbl0374.57002MR58 #31119
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.