A Gauss-Bonnet formula for discrete arithmetically defined groups

G. Harder

Annales scientifiques de l'École Normale Supérieure (1971)

  • Volume: 4, Issue: 3, page 409-455
  • ISSN: 0012-9593

How to cite

top

Harder, G.. "A Gauss-Bonnet formula for discrete arithmetically defined groups." Annales scientifiques de l'École Normale Supérieure 4.3 (1971): 409-455. <http://eudml.org/doc/81886>.

@article{Harder1971,
author = {Harder, G.},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {3},
pages = {409-455},
publisher = {Elsevier},
title = {A Gauss-Bonnet formula for discrete arithmetically defined groups},
url = {http://eudml.org/doc/81886},
volume = {4},
year = {1971},
}

TY - JOUR
AU - Harder, G.
TI - A Gauss-Bonnet formula for discrete arithmetically defined groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1971
PB - Elsevier
VL - 4
IS - 3
SP - 409
EP - 455
LA - eng
UR - http://eudml.org/doc/81886
ER -

References

top
  1. [1] A. BOREL, Introduction aux groupes arithmétiques, Hermann, Paris, 1969. Zbl0186.33202MR39 #5577
  2. [2] A. BOREL et J. TITS, Groupes réductifs, Publ. Math., 27, Bures-sur-Yvette, I.H.E.S., 1965, p. 55-150. Zbl0145.17402MR34 #7527
  3. [3] N. BOURBAKI, Groupes et algèbres de Lie, chap. 4-6, Hermann, Paris, 1968. 
  4. [4] S. S. CHERN, On the curvatura integra on a Riemannian manifold (Ann. of Math., vol. 46, 1945, p. 674-684). Zbl0060.38104MR7,328c
  5. [5] G. HARDER, Minkowskische Reduktionstheorie über Funktionenkörpern (Inv. math., vol. 7, 1969, p. 33-54). Zbl0242.20046MR44 #1667
  6. [6] S. KOBAYASHI and K. NOMIZU, Foundations of differential geometry, I, II, Interscience publishers, New York, 1963, 1969. Zbl0119.37502
  7. [7] R. P. LANGLANDS, The volume of the fundamental domain for some arithmetical subgroups of Chevalley groups (Proc. of Symp. Math., Amer. Math. Soc., Providence, 1966, p. 143-148). Zbl0218.20041MR35 #4226
  8. [8] T. ONO, On algebraic groups and discontinuous subgroups (Nagoya Math. J., vol. 27, 1966, p. 279-322). Zbl0166.29802MR33 #7342
  9. [9] M. S. RAGHUNATHAN, A note on quotients of real algebraic groups by arithmetic subgroups (Inv. math., vol. 4, 1968, p. 318-233). Zbl0218.22015MR37 #5894
  10. [10] J.-P. SERRE, Cohomologie des groupes discrets (C. R. Acad. Sc., t. 268, 1969, p. 268-271). Zbl0174.31301MR39 #2769
  11. [11] C. L. SIEGEL, Gesammelte Werke, Bd. III, s. 443-458. 
  12. [12] J. TITS, Groupes simples et géométries associées, Tableau 4 (Proc. Int. Congress of Mathematicans, 1962, p. 197-221). Zbl0131.26502
  13. [13] A. WEIL, Adeles and algebraic groups, Lecture notes, Princeton, 1961. 
  14. [14] A. WEIL, Basic algebraic number theory, Springer Verlag, New York, 1967. Zbl0176.33601MR38 #3244

Citations in EuDML Documents

top
  1. Jean-Pierre Serre, Cohomologie des groupes discrets
  2. Adam Korányi, K. Brenda MacGibbon, Asymptotically minimax estimation of order-constrained parameters and eigenfunctions of the laplacian on the ball
  3. F. Hirzebruch, The Hilbert modular group, resolution of the singularities at the cusps and related problems
  4. Michael Gromov, Volume and bounded cohomology
  5. Jürgen Rohlfs, Birgit Speh, Representations with cohomology in the discrete spectrum of subgroups of SO ( n , 1 ) ( Z ) and Lefschetz numbers
  6. Moshe Jarden, Gopal Prasad, Appendix on the discriminant quotient formula for global field
  7. Jürgen Rohlfs, Birgit Speh, Automorphic representations and Lefschetz numbers

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.