Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups

Armand Borel; Gopal Prasad

Publications Mathématiques de l'IHÉS (1989)

  • Volume: 69, page 119-171
  • ISSN: 0073-8301

How to cite

top

Borel, Armand, and Prasad, Gopal. "Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups." Publications Mathématiques de l'IHÉS 69 (1989): 119-171. <http://eudml.org/doc/104049>.

@article{Borel1989,
author = {Borel, Armand, Prasad, Gopal},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {linear algebraic groups; arithmetic groups},
language = {eng},
pages = {119-171},
publisher = {Institut des Hautes Études Scientifiques},
title = {Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups},
url = {http://eudml.org/doc/104049},
volume = {69},
year = {1989},
}

TY - JOUR
AU - Borel, Armand
AU - Prasad, Gopal
TI - Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups
JO - Publications Mathématiques de l'IHÉS
PY - 1989
PB - Institut des Hautes Études Scientifiques
VL - 69
SP - 119
EP - 171
LA - eng
KW - linear algebraic groups; arithmetic groups
UR - http://eudml.org/doc/104049
ER -

References

top
  1. [1] E. BOMBIERI, Counting points on curves over finite fields (d'après S. A. STEPANOV), Séminaire Bourbaki, Springer L.N.M., 383 (1974). Zbl0307.14011MR55 #2912
  2. [2] A. BOREL, Some finiteness properties of adele groups over number fields, Publ. Math. I.H.E.S., 16 (1963), 5-30. Zbl0135.08902MR34 #2578
  3. [3] A. BOREL, On the set of discrete subgroups of bounded covolume in a semi-simple group, Proc. Indian Acad. Sci. (Math. Sci.), 97 (1987), 45-52. Zbl0658.22004MR90e:22013
  4. [4] A. BOREL et G. PRASAD, Sous-groupes discrets de groupes p-adiques à covolume borné, C. R. Acad. Sc. Paris, 305 (1987), 357-362. Zbl0646.22006MR88m:20095
  5. [5] A. BOREL et J.-P. SERRE, Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv., 39 (1964), 111-164. Zbl0143.05901MR31 #5870
  6. [6] A. BOREL et J.-P. SERRE, Cohomologie d'immeubles et de groupes S-arithmétiques, Topology, 15 (1976), 211-232. Zbl0338.20055MR56 #5786
  7. [7] A. BOREL et J. TITS, Homomorphismes "abstraits" de groupes algébriques simples, Ann. Math., 97 (1973), 499-571. Zbl0272.14013MR47 #5134
  8. [8] F. BRUHAT et J. TITS, Groupes réductifs sur un corps local, I, Pub. Math. I.H.E.S., 41 (1971), 5-251 ; II, ibid., 60 (1984), 5-184 ; III, J. Fac. Sci. Univ. Tokyo (Sec. IA), 34 (1987), 671-698. Zbl0657.20040
  9. [9] C. CHEVALLEY, Introduction to the theory of algebraic functions of one variable, Math. Surveys, Number 6, A.M.S. (1951). Zbl0045.32301MR13,64a
  10. [10] T. CHINBURG, Volumes of hyperbolic manifolds, J. Diff. Geom., 18 (1983), 783-789. Zbl0578.22014MR85i:22016
  11. [11] M. DEURING, Lectures on the theory of algebraic functions of one variable, Springer L.N.M., 314 (1973). Zbl0249.14008MR49 #8970
  12. [12] M. FRIED and M. JARDEN, Field arithmetic, Berlin, Springer-Verlag (1986). Zbl0625.12001MR89b:12010
  13. [13] F. GIRAUD, Cohomologie non abélienne, Grund. Math. Wiss., Springer-Verlag, 1971. Zbl0226.14011
  14. [14] G. HARDER, Minkowskische Reduktionstheorie über Funktionenkörpern, Invent. Math., 7 (1969), 33-54. Zbl0242.20046MR44 #1667
  15. [15] G. HARDER, Über die Galoiskohomologie halbeinfacher algebraischer Gruppen III, J. Reine Angew. Math. 274/275 (1975), 125-138. Zbl0317.14025MR52 #3352
  16. [16] N. IWAHORI and H. MATSUMOTO, On some Bruhat decompositions and the structure of the Hecke rings of the p-adic Chevalley groups, Publ. Math. I.H.E.S., 25 (1965), 5-48. Zbl0228.20015MR32 #2486
  17. [17] W. M. KANTOR, R. A. LIEBLER and J. TITS, On discrete chamber-transitive automorphism groups of affine buildings, Bull. A.M.S., 16 (1987), 129-133. Zbl0631.20033MR87m:20124
  18. [18] R. E. KOTTWITZ, Tamagawa numbers, Ann. Math., 127 (1988), 629-646. Zbl0678.22012MR90e:11075
  19. [19] M. KNESER, Galoiskohomologie halbeinfacher algebraischer Gruppen über p-adischen Körpern, I, II, Math. Z., 88 (1965), 250-272. Zbl0143.04702
  20. [20] S. LANG, Algebraic number theory, Addison-Wesley, Reading, Mass. (1968). 
  21. [21] S. LANG, Algebra, Addison-Wesley, Reading, Mass. (1965). Zbl0193.34701MR33 #5416
  22. [22] G. A. MARGULIS, Cobounded subgroups of algebraic groups over local fields, Funct. Anal. Appl., 11 (1977), 45-57. Zbl0412.22007MR56 #495
  23. [23] G. A. MARGULIS, Arithmeticity of the irreducible lattices in the semi-simple groups of rank greater than I, Invent. Math., 76 (1984), 93-120. Zbl0551.20028MR85j:22021
  24. [24] G. A. MARGULIS and J. ROHLFS, On the proportionality of covolumes of discrete subgroups, Math. Ann., 275 (1986), 197-205. Zbl0579.22014MR87m:22028
  25. [25] J. S. MILNE, Étale Cohomology, Princeton U. Press (1980). Zbl0433.14012MR81j:14002
  26. [26] A. M. ODLYZKO, Some analytic estimates of class numbers and discriminants, Invent. Math., 29 (1975), 275-286. Zbl0306.12005MR51 #12788
  27. [27] A. M. ODLYZKO, Lower bounds for discriminants of number fields, Acta Arith., 29 (1976), 275-297. Zbl0286.12006MR53 #5531
  28. [28] J. OESTERLÉ, Nombres de Tamagawa et groupes unipotents en caractéristique p, Invent. Math., 78 (1984), 13-88. Zbl0542.20024MR86i:11016
  29. [29] G. POITOU, Minorations de discriminants (d'après A. M. ODLYZKO), Sém. Bourbaki, Springer L.N.M., 567 (1977). Zbl0359.12010MR55 #7995
  30. [30] G. PRASAD, Strong approximation, Ann. Math., 105 (1977), 553-572. Zbl0348.22006MR56 #2921
  31. [31] G. PRASAD, Volumes of S-arithmetic quotients of semi-simple groups, Publ. Math. I.H.E.S., 69 (1989), 91-117. Zbl0695.22005MR91c:22023
  32. [32] J. ROHLFS, Die maximalen arithmetisch definierten Untergruppen zerfallender einfacher Gruppen, Math. Ann., 244 (1979), 219-231. Zbl0426.20030MR81g:22015
  33. [33] J.-P. SERRE, Cohomologie des groupes discrets, in Ann. of Math. Studies, 70, Princeton University Press (1971). Zbl0235.22020
  34. [34] S. S. SHATZ, Profinite groups, arithmetic and geometry, Ann. of Math. Studies, 67, Princeton University Press, 1972. Zbl0236.12002MR50 #279
  35. [35] C. L. SIEGEL, Über die Classenzahl quadratischer Zahlkörper, Acta. Arith., 1 (1936), 83-86. Zbl0011.00903JFM61.0170.02
  36. [36] A. SPEISER, Die Theorie der Gruppen von endlicher Ordnung, Grund. Math. Wiss., 5, Springer-Verlag. 
  37. [37] T. A. SPRINGER and R. STEINBERG, Conjugacy classes, in Springer L.N.M., 131 (1970), 167-294. Zbl0249.20024MR42 #3091
  38. [38] R. STEINBERG, Regular elements of semi-simple algebraic groups, Publ. Math. I.H.E.S., 25 (1965), 49-80. Zbl0136.30002MR31 #4788
  39. [39] R. STEINBERG, Endomorphisms of linear algebraic groups, Mem. A.M.S., 80 (1968). Zbl0164.02902MR37 #6288
  40. [40] J. TITS, Classification of algebraic semi-simple groups, Proc. A.M.S. Symp. Pure Math., 9 (1966), 33-62. Zbl0238.20052MR37 #309
  41. [41] J. TITS, Reductive groups over local fields, Proc. A.M.S. Symp. Pure Math., 33, Part 1 (1979). Zbl0415.20035MR80h:20064
  42. [42] J. TITS, Buildings and group amalgamations, in Groups St. Andrews 1985, Cambridge University Press, 1987, 110-127. Zbl0631.20019MR89i:20001
  43. [43] T. N. VENKATARAMANA, On superrigidity and arithmeticity of lattices in semi-simple groups, Invent. Math., 92 (1988), 255-306. Zbl0649.22008MR89c:20073
  44. [44] H. C. WANG, Topics on totally discontinuous groups, in Symmetric spaces (ed. by W. M. BOOTHBY and G. WEISS), New York, Marcel Dekker (1972), 459-487. Zbl0232.22018MR54 #2879
  45. [45] A. WEIL, Basic number theory, Berlin, Springer-Verlag. Zbl0267.12001
  46. [46] A. WEIL, Adeles and algebraic groups, Progress in Math., 23 (1982), Birkhäuser, Boston. Zbl0493.14028MR83m:10032
  47. [47] R. ZIMMERT, Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. Math., 62 (1981), 367-380. Zbl0456.12003MR83g:12008

Citations in EuDML Documents

top
  1. Armand Borel, Gopal Prasad, Addendum : Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups
  2. Gopal Prasad, Andreis. Rapinchuk, Weakly commensurable arithmetic groups and isospectral locally symmetric spaces
  3. Moshe Jarden, Gopal Prasad, Appendix on the discriminant quotient formula for global field
  4. A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions : a survey of recent results

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.