Will theory unify mathematics and physics ?
Publications Mathématiques de l'IHÉS (1998)
- Volume: S88, page 67-72
- ISSN: 0073-8301
Access Full Article
topHow to cite
topDouglas, Michael R.. "Will $M$ theory unify mathematics and physics ?." Publications Mathématiques de l'IHÉS S88 (1998): 67-72. <http://eudml.org/doc/104151>.
@article{Douglas1998,
author = {Douglas, Michael R.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {moduli space},
language = {eng},
pages = {67-72},
publisher = {Institut des Hautes Etudes Scientifiques},
title = {Will $M$ theory unify mathematics and physics ?},
url = {http://eudml.org/doc/104151},
volume = {S88},
year = {1998},
}
TY - JOUR
AU - Douglas, Michael R.
TI - Will $M$ theory unify mathematics and physics ?
JO - Publications Mathématiques de l'IHÉS
PY - 1998
PB - Institut des Hautes Etudes Scientifiques
VL - S88
SP - 67
EP - 72
LA - eng
KW - moduli space
UR - http://eudml.org/doc/104151
ER -
References
top- [1] T. Banks, W. Fischler, S. Shenker and L. Susskind, Phys. Rev.D55 (1997) 5112-5128; hep-th/9610043.
- [2] M. Berger , Bull. Soc. Math. France83 (1955) 279-330. MR79806
- [3] P. Candelas , G.T. Horowitz, A. Strominger and E. Witten, Nucl. Phys.B258 (1985) 46-74. MR800347
- [4] S. Coleman , Aspects of Symmetry, Cambridge1985.
- [5] E. Cremmer , B. Julia, J. Scherk, Phys. Lett.76B ( 1978) 409-412.
- [6] The most recent data on Calabi-Yau manifolds is kept on-line by a number of physicists and mathematicians; notably R. Schimmrigk ( http://thew02.physik.uni-bonn.de/netah/cy.html) and S. Katz (http://www.math.okstate.edu/katz/CY).
- [7] M.R. Douglas , Superstring Dualities, Dirichlet Branes and the Small-Scale Structure of Space, Talk given at Les Houches Summer School on Theoretical Physics, Session 64: Quantum Symmetries, Les Houches, France, 1 Aug - 8 Sep 1995 ; hep-th/9610041. Zbl0938.81036
- [8] R.P. Feynman , The Character of Physical Law, Cambridge, 1965; Surely You're Joking, Mr. Feynman, W. W. Norton, 1985.
- [9] M.B. Green , J.H. Schwarz and E. Witten, Superstring Theory , 2 vols, Cambridge1987. Zbl0619.53002
- [10] J. Maldacena , hep-th/9711200.
- [11] D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys.B483 (1997) 229-247; hep-th/9609070; Zbl0925.81228MR1439440
- M.R. Douglas, S. Katz and C. Vafa, Small instantons, del Pezzo surfaces and type I' theory, Nucl. Phys.B497 (1997) 155-172; hep-th/9609071. Zbl0935.81057MR1467888
- [12] See for example A. Pais, Subtle is the Lord, Oxford University Press, 1982. Zbl0525.01017MR690419
- [13] J. Polchinski , Rev. Mod. Phys.68 (1996) 1245, hep-th/9607050.
- [14] As quoted in M. Reed and B. Simon, Methods of Modern Mathematical Physics , vol IV, p. 1, Academic Press1978.
- [15] J.H. Schwarz , Lectures on Superstring and M Theory Dualities, Lectures given at the ICTP Spring School (March 1996) and the TASI Summer School (June 1996, Nucl. Phys. Proc. Suppl.55B (1997) 1-32, hep-th/9607201. Zbl0957.81626MR1463491
- [16] A. Sen, An Introduction to Non-perturbative String Theory, Lectures given at Isaac Newton Institute and DAMTP; hep-th/9802051.
- [17] A. Strominger , Nucl. Phys. Proc. Suppl.46 (1996) 204-209; hep-th/9510207. Zbl0908.53040MR1411474
- [18] E. Witten , Nucl. Phys.B188 (1981) 513.
- [19] E. Witten , Mod. Phys. Lett.A10 (1995) 2153-2156; hep-th/9506101. Zbl1022.81798
- [20] C.N. Yang , Selected papers 1945-1980, Freeman1983 .
- [21] S.T. Yau , Comm. Pure Appl. Math.31 (1978) 339-411. Zbl0369.53059MR480350
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.