Periodic orbits and chain-transitive sets of C1-diffeomorphisms
Publications Mathématiques de l'IHÉS (2006)
- Volume: 104, page 87-141
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topCrovisier, Sylvain. "Periodic orbits and chain-transitive sets of C1-diffeomorphisms." Publications Mathématiques de l'IHÉS 104 (2006): 87-141. <http://eudml.org/doc/104221>.
@article{Crovisier2006,
abstract = {We prove that the chain-transitive sets of C1-generic diffeomorphisms are approximated in the Hausdorff topology by periodic orbits. This implies that the homoclinic classes are dense among the chain-recurrence classes. This result is a consequence of a global connecting lemma, which allows to build by a C1-perturbation an orbit connecting several prescribed points. One deduces a weak shadowing property satisfied by C1-generic diffeomorphisms: any pseudo-orbit is approximated in the Hausdorff topology by a finite segment of a genuine orbit. As a consequence, we obtain a criterion for proving the tolerance stability conjecture in Diff1(M).},
author = {Crovisier, Sylvain},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {-generic diffeomorphisms; periodic orbits; homoclinic classes; chain-recurrence classes; shadowing},
language = {eng},
pages = {87-141},
publisher = {Springer},
title = {Periodic orbits and chain-transitive sets of C1-diffeomorphisms},
url = {http://eudml.org/doc/104221},
volume = {104},
year = {2006},
}
TY - JOUR
AU - Crovisier, Sylvain
TI - Periodic orbits and chain-transitive sets of C1-diffeomorphisms
JO - Publications Mathématiques de l'IHÉS
PY - 2006
PB - Springer
VL - 104
SP - 87
EP - 141
AB - We prove that the chain-transitive sets of C1-generic diffeomorphisms are approximated in the Hausdorff topology by periodic orbits. This implies that the homoclinic classes are dense among the chain-recurrence classes. This result is a consequence of a global connecting lemma, which allows to build by a C1-perturbation an orbit connecting several prescribed points. One deduces a weak shadowing property satisfied by C1-generic diffeomorphisms: any pseudo-orbit is approximated in the Hausdorff topology by a finite segment of a genuine orbit. As a consequence, we obtain a criterion for proving the tolerance stability conjecture in Diff1(M).
LA - eng
KW - -generic diffeomorphisms; periodic orbits; homoclinic classes; chain-recurrence classes; shadowing
UR - http://eudml.org/doc/104221
ER -
References
top- 1. F. Abdenur, C. Bonatti, S. Crovisier, Global dominated splittings and the C1 Newhouse phenomenon, Proc. Amer. Math. Soc., 134 (2006), 2229-2237 Zbl1088.37013MR2213695
- 2. F. Abdenur, C. Bonatti, S. Crovisier, L. Díaz, Generic diffeomorphisms on compact surfaces, Fundam. Math., 187 (2005), 127-159 Zbl1089.37032MR2214876
- 3. F. Abdenur and L. Díaz, Pseudo-orbit shadowing in the C1-topology, to appear in Discrete Cont. Dyn. Syst. Zbl1132.37014MR2257429
- 4. R. Abraham, S. Smale, Nongenericity of Ω-stability, Global analysis I, Proc. Symp. Pure Math. AMS, 14 (1970), 5-8 Zbl0215.25102
- 5. M.-C. Arnaud, Création de connexions en topologie C1, Ergodic Theory Dyn. Syst., 21 (2001), 339-381 Zbl0997.37007MR1827109
- 6. M.-C. Arnaud, Approximation des ensembles ω-limites des difféomorphismes par des orbites périodiques, Ann. Sci. Éc. Norm. Supér., IV. Sér., 36 (2003), 173-190 Zbl1024.37011
- 7. M.-C. Arnaud, C. Bonatti, S. Crovisier, Dynamiques symplectiques génériques, Ergodic Theory Dyn. Syst., 25 (2005), 1401-1436 Zbl1084.37017MR2173426
- 8. C. Bonatti, S. Crovisier, Récurrence et généricité, Invent. Math., 158 (2004), 33-104 Zbl1071.37015MR2090361
- 9. C. Bonatti, L. Díaz, Persistent nonhyperbolic transitive diffeomorphisms, Ann. Math., 143 (1996), 357-396 Zbl0852.58066MR1381990
- 10. C. Bonatti, L. Díaz, On maximal transitive sets of generic diffeomorphisms, Publ. Math., Inst. Hautes Étud. Sci., 96 (2003), 171-197 Zbl1032.37011MR1985032
- 11. C. Bonatti, L. Díaz, E. Pujals, A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicicity or infinitely many sinks or sources, Ann. Math., 158 (2003), 355-418 Zbl1049.37011MR2018925
- 12. C. Bonatti, L. Díaz, G. Turcat, Pas de “shadowing lemma” pour des dynamiques partiellement hyperboliques, C. R. Acad. Sci. Paris, 330 (2000), 587-592 Zbl0973.37016
- 13. R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer, Berlin – New York (1975) Zbl0308.28010MR442989
- 14. C. Conley, Isolated invariant sets and Morse index, AMS, Providence (1978) Zbl0397.34056MR511133
- 15. C. Carballo, C. Morales, M.-J. Pacífico, Homoclinic classes for C1-generic vector fields, Ergodic Theory Dyn. Syst., 23 (2003), 1-13 Zbl1047.37009MR1972228
- 16. R. Corless, S. Pilyugin, Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl., 189 (1995), 409-423 Zbl0821.58036MR1312053
- 17. W. Melo, Structural stability of diffeomorphisms on two-manifolds, Invent. Math., 21 (1973), 233-246 Zbl0291.58011MR339277
- 18. G. Gan, L. Wen, Heteroclinic cycles and homoclinic closures for generic diffeomorphisms, J. Dyn. Differ. Equations, 15 (2003), 451-471 Zbl1034.37013MR2046726
- 19. S. Gonchenko, L. Shilńikov, D. Turaev, Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits, Chaos, 6 (1996), 15-31 Zbl1055.37578MR1376892
- 20. S. Hayashi, Connecting invariant manifolds and the solution of the C1-stability and Ω-stability conjectures for flows, Ann. Math., 145 (1997), 81-137 Zbl0871.58067
- 21. I. Kupka, Contribution à la théorie des champs génériques, Contrib. Differ. Equ., 2 (1963), 457-484 Zbl0149.41002MR165536
- 22. R. Mañé, Contributions to the stability conjecture, Topology, 17 (1978), 383-396 Zbl0405.58035MR516217
- 23. R. Mañé, An ergodic closing lemma, Ann. Math., 116 (1982), 503-540 Zbl0511.58029MR678479
- 24. R. Mañé, A proof of the C1 stability conjecture, Publ. Math., Inst. Hautes Étud. Sci., 66 (1988), 161-210 Zbl0678.58022MR932138
- 25. M. Mazur, Tolerance stability conjecture revisited, Topology Appl., 131 (2003), 33-38 Zbl1024.37012MR1982812
- 26. S. Newhouse, Hyperbolic limit sets, Trans. Amer. Math. Soc., 167 (1972), 125-150 Zbl0239.58009MR295388
- 27. S. Newhouse, Diffeomorphisms with infinitely many sinks, Topology, 13 (1974), 9-18 Zbl0275.58016MR339291
- 28. S. Newhouse, The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math., Inst. Hautes Étud. Sci., 50 (1979), 101-151 Zbl0445.58022MR556584
- 29. K. Odani, Generic homeomorphisms have the pseudo-orbit tracing property, Proc. Amer. Math. Soc., 110 (1990), 281-284 Zbl0713.58025MR1009998
- 30. J. Palis, On the C1 Ω-stability conjecture, Publ. Math., Inst. Hautes Étud. Sci., 66 (1988), 211-215 Zbl0648.58019
- 31. J. Palis, S. Smale, Structural stability theorem, Proc. Amer. Math. Soc. Symp. Pure Math., 14 (1970), 223-232 Zbl0214.50702MR267603
- 32. J. Palis and F. Takens, Hyperbolicity & sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Studies in Advanced Mathematics, 35, Cambridge University Press, Cambridge, 1993. Zbl0790.58014MR1237641
- 33. J. Palis, M. Viana, High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. Math., 140 (1994), 207-250 Zbl0817.58004MR1289496
- 34. S. Pilyugin, Shadowing in dynamical systems, Lect. Notes Math., vol. 1706, Springer, Berlin, 1999. Zbl0954.37014MR1727170
- 35. C. Pugh, The closing lemma, Amer. J. Math., 89 (1967), 956-1009 Zbl0167.21803MR226669
- 36. C. Pugh, An improved closing lemma and a general density theorem, Amer. J. Math., 89 (1967), 1010-1021 Zbl0167.21804MR226670
- 37. C. Pugh, C. Robinson, The C1-closing lemma, including hamiltonians, Ergodic Theory Dyn. Syst., 3 (1983), 261-314 Zbl0548.58012MR742228
- 38. J. Robbin, A structural stability theorem, Ann. Math., 94 (1971), 447-493 Zbl0224.58005MR287580
- 39. C. Robinson, Generic properties of conservative systems, Amer. J. Math., 92 (1970), 562-603 Zbl0212.56502MR273640
- 40. C. Robinson, Cr - structural stability implies Kupka–Smale, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 443–449, Academic Press, New York, 1973. Zbl0275.58014MR334282
- 41. C. Robinson, Structural stability of C1-diffeomorphisms, J. Differ. Equ., 22 (1976), 28-73 Zbl0343.58009MR474411
- 42. C. Robinson, Stability theorems and hyperbolicity in dynamical systems, Rocky Mt. J. Math., 7 (1977), 425-437 Zbl0375.58016MR494300
- 43. N. Romero, Persistence of homoclinic tangencies in higher dimensions, Ergodic Theory Dyn. Syst., 15 (1995), 735-757 Zbl0833.58020MR1346398
- 44. K. Sakai, Diffeomorphisms with weak shadowing, Fundam. Math., 168 (2001), 57-75 Zbl0968.37009MR1835482
- 45. M. Shub, Stability and genericity for diffeomorphisms, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 493–514, Academic Press, New York, 1973. Zbl0289.58013MR331431
- 46. M. Shub, Topologically transitive diffeomorphisms of T4, Lect. Notes Math., vol. 206, pp. 39–40, Springer, Berlin–New York, 1971.
- 47. C. Simon, A 3-dimensional Abraham-Smale example, Proc. Amer. Math. Soc., 34 (1972), 629-630 Zbl0259.58006MR295391
- 48. S. Smale, Stable manifolds for differential equations and diffeomorphisms, Ann. Sc. Norm. Super. Pisa, 17 (1963), 97-116 Zbl0113.29702MR165537
- 49. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817 Zbl0202.55202MR228014
- 50. F. Takens, On Zeeman’s tolerance stability conjecture, Lect. Notes Math., vol. 197, 209–219, Springer, Berlin, 1971. Zbl0217.48303
- 51. F. Takens, Tolerance stability, Lect. Notes Math., vol. 468, 293–304, Springer, Berlin, 1975. Zbl0321.54022MR650298
- 52. L. Wen, A uniform C1 connecting lemma, Discrete Contin. Dyn. Syst., 8 (2002), 257-265 Zbl1136.37317MR1877839
- 53. L. Wen, Z. Xia, C1 connecting lemmas, Trans. Amer. Math. Soc., 352 (2000), 5213-5230 Zbl0947.37018MR1694382
- 54. W. White, On the tolerance stability conjecture, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 663–665, Academic Press, New York, 1973. Zbl0282.54024MR341534
- 55. G. Yau, J. Yorke, An open set of maps for which every point is absolutely non-shadowable, Proc. Amer. Math. Soc., 128 (2000), 909-918 Zbl0996.37025MR1623005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.