Approximation des ensembles ω-limites des difféomorphismes par des orbites périodiques

Marie-Claude Arnaud

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 2, page 173-190
  • ISSN: 0012-9593

How to cite

top

Arnaud, Marie-Claude. "Approximation des ensembles ω-limites des difféomorphismes par des orbites périodiques." Annales scientifiques de l'École Normale Supérieure 36.2 (2003): 173-190. <http://eudml.org/doc/82598>.

@article{Arnaud2003,
author = {Arnaud, Marie-Claude},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {-limit sets; diffeomorphisms; periodic orbits; attractors},
language = {fre},
number = {2},
pages = {173-190},
publisher = {Elsevier},
title = {Approximation des ensembles ω-limites des difféomorphismes par des orbites périodiques},
url = {http://eudml.org/doc/82598},
volume = {36},
year = {2003},
}

TY - JOUR
AU - Arnaud, Marie-Claude
TI - Approximation des ensembles ω-limites des difféomorphismes par des orbites périodiques
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 2
SP - 173
EP - 190
LA - fre
KW - -limit sets; diffeomorphisms; periodic orbits; attractors
UR - http://eudml.org/doc/82598
ER -

References

top
  1. [1] Arnaud M.-C., Le “closing lemma” en topologie C1, Mem. Soc. Math. Fr, Nouv. Série74 (1998). Zbl0920.58039
  2. [2] Arnaud M.-C., Un lemme de fermeture d'orbites : le “orbit closing lemma”, C.R.A.S., Ser. I323 (1996) 1175-1178. Zbl0867.58040
  3. [3] Arnaud M.-C., Création de connexions en topologie C1, Ergodic Theory Dynam. Systems21 (2001) 1-43. Zbl0997.37007MR1827109
  4. [4] Arnaud M.-C., The generic symplectic C1-diffeomorphisms of 4-dimensional symplectic manifolds are hyperbolic, partially hyperbolic or have a completely periodic point, Ergodic Theory Dynam. Systems, à paraître. Zbl1030.37037
  5. [5] Arnaud M.-C., Création de points périodiques de tous types au voisinage des tores K.A.M, Bull. Soc. Math. France123 (1995) 591-603. Zbl0853.58046MR1373949
  6. [6] Bonatti C., Diaz L., Pujals E., A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, preprint. Zbl1049.37011MR2018925
  7. [7] Bonatti C., Diaz L., Connexions hétéroclines et généricité d'une infinité de puits et de sources, Ann. Sci. Ecole Norm. Sup.32 (1999) 135-150. Zbl0944.37012MR1670524
  8. [8] Brin M.I., Pesin S.A., Partially hyperbolic dynamical systems, Math. USSR Izvestija8 (1974) 177-218. Zbl0309.58017
  9. [9] Hayashi S., Connecting invariant manifolds and the solution of the C1-stability and Ω-stability conjectures for flows, Ann. Math.145 (1997) 81-137. Zbl0871.58067
  10. [10] Hayashi S., Hyperbolicity, stability and the creation of homoclinic points, Documenta Mathematica, Extra Vol. ICMII (1998) 789-796. Zbl0911.58023MR1648126
  11. [11] Kuratowski C., Gabay J. (Ed.), Topologie, 1992. Zbl0849.01044MR1296876
  12. [12] Mañé R., An ergodic closing lemma, Ann. Math.116 (1982) 503-540. Zbl0511.58029MR678479
  13. [13] Morales C.A., Pacifico M.-J., Lyapunov stability of generic ω-limit sets, preprint. Zbl1162.37302
  14. [14] Newhouse S., Diffeomorphisms with infinitely many sinks, Topology12 (1974) 9-18. Zbl0275.58016MR339291
  15. [15] Newhouse S., Quasi-elliptic points in conservative dynamical systems, Amer. J. Math.99 (1977) 1081-1087. Zbl0379.58011MR455049
  16. [16] Pugh C., Robinson C., The C1 closing lemma, including Hamiltonians, Ergodic Theory Dynam. Systems3 (1983) 261-314. Zbl0548.58012MR742228
  17. [17] Shub M., Stabilité globale des systèmes dynamiques, Astérisque56 (1978). Zbl0396.58014MR513592
  18. [18] Xia Z., Homoclinic points in symplectic and volume preserving diffeomorphisms, Comm. Math. Phys.117 (1996) 435-449. Zbl0959.37050MR1384143

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.