# Stationary measures and phase transition for a class of Probabilistic Cellular Automata

Paolo Dai Pra; Pierre-Yves Louis; Sylvie Rœlly

ESAIM: Probability and Statistics (2010)

- Volume: 6, page 89-104
- ISSN: 1292-8100

## Access Full Article

top## Abstract

top## How to cite

topPra, Paolo Dai, Louis, Pierre-Yves, and Rœlly, Sylvie. "Stationary measures and phase transition for a class of Probabilistic Cellular Automata." ESAIM: Probability and Statistics 6 (2010): 89-104. <http://eudml.org/doc/104297>.

@article{Pra2010,

abstract = {
We discuss various properties of Probabilistic Cellular Automata, such
as the structure of the set of stationary measures and multiplicity of
stationary measures (or phase transition) for reversible models.
},

author = {Pra, Paolo Dai, Louis, Pierre-Yves, Rœlly, Sylvie},

journal = {ESAIM: Probability and Statistics},

keywords = {Probabilistic Cellular Automata; stationary measure; Gibbs
measure.; Gibbs measure; probabilistic cellular automata; stationary measures},

language = {eng},

month = {3},

pages = {89-104},

publisher = {EDP Sciences},

title = {Stationary measures and phase transition for a class of Probabilistic Cellular Automata},

url = {http://eudml.org/doc/104297},

volume = {6},

year = {2010},

}

TY - JOUR

AU - Pra, Paolo Dai

AU - Louis, Pierre-Yves

AU - Rœlly, Sylvie

TI - Stationary measures and phase transition for a class of Probabilistic Cellular Automata

JO - ESAIM: Probability and Statistics

DA - 2010/3//

PB - EDP Sciences

VL - 6

SP - 89

EP - 104

AB -
We discuss various properties of Probabilistic Cellular Automata, such
as the structure of the set of stationary measures and multiplicity of
stationary measures (or phase transition) for reversible models.

LA - eng

KW - Probabilistic Cellular Automata; stationary measure; Gibbs
measure.; Gibbs measure; probabilistic cellular automata; stationary measures

UR - http://eudml.org/doc/104297

ER -

## References

top- A.R. Barron, The strong ergodic theorem for densities: Generalized Shannon-McMillan-Breiman theorem. Ann. Probab.13 (1985) 1292-1303.
- S. Bigelis, E.N.M. Cirillo, J.L. Lebowitz and E.R. Speer, Critical droplets in metastable states of probabilistic cellular automata. Phys. Rev. E59 (1999) 3935-3941.
- P. Brémaud, Markov chains. Gibbs fields, Monte-Carlo simulation, and queues. Springer-Verlag, New York, Texts in Appl. Math. 31 (1999).
- P. Dai Pra, Ph.D. Thesis. Rutgers University (1992).
- D.A. Dawson, Synchronous and asynchronous reversible Markov systems. Canad. Math. Bull. 17 (1974/75) 633-649.
- H.-O. Georgii, Gibbs measures and phase transitions. Walter de Gruyter & Co., Berlin, de Gruyter Stud. in Math. 9 (1988).
- S. Goldstein, R. Kuik, J.L. Lebowitz and C. Maes, From PCAs to equilibrium systems and back. Comm. Math. Phys.125 (1989) 71-79.
- X. Guyon, Champs aléatoires sur un réseau. Modélisations, statistique et applications, Techniques stochastiques. Masson, Paris (1992).
- K. Handa, Entropy production per site in (nonreversible) spin-flip processes. J. Statist. Phys.83 (1996) 555-571.
- R. Holley, Free energy in a Markovian model of a lattice spin system. Comm. Math. Phys.23 (1971) 87-99.
- O. Kozlov and N. Vasilyev, Reversible Markov chains with local interaction, Multicomponent random systems. Dekker, New York, Adv. Probab. Related Topics 6 (1980) 451-469.
- H. Künsch, Nonreversible stationary measures for infinite interacting particle systems. Z. Wahrsch. Verw. Gebiete66 (1984) 407-424.
- H. Künsch, Time reversal and stationary Gibbs measures. Stochastic Process. Appl.17 (1984) 159-166.
- J.L. Lebowitz, C. Maes and E.R. Speer, Statistical mechanics of probabilistic cellular automata. J. Statist. Phys.59 (1990) 117-170.
- T.M. Liggett, Interacting particle systems, Vol. 276. Springer-Verlag, New York-Berlin (1985).
- F.J. Lopez and G. Sanz, Stochastic comparisons for general probabilistic cellular automata. Stat. Probab. Lett.46 (2000) 401-410.
- C. Maes and S.B. Shlosman, Ergodicity of probabilistic cellular automata: A constructive criterion. Comm. Math. Phys.135 (1991) 233-251.
- C. Maes and S.B. Shlosman, When is an interacting particle system ergodic? Comm. Math. Phys. 151 (1993) 447-466.
- C. Maes and K. Vande Velde, The (non-) Gibbsian nature of states invariant under stochastic transformations. Physica A206 (1994) 587-603.
- V.A. Malyshev and R.A. Minlos, Gibbs random fields, Cluster expansions. Kluwer Academic Publishers, Dordrecht, Math. Appl. 44 (1991).
- F. Martinelli, Lectures on Glauber dynamics for discrete spin models, in Lectures on probability theory and statistics, Saint-Flour (1997) 93-191. Springer, Berlin, Lecture Notes in Math. 1717 (1999).
- C. Preston, Random fields. Springer-Verlag, Berlin-New York, Lecture Notes in Math. 534 (1976).
- A.L. Toom, N.B. Vasilyev, O.N. Stavskaya, L.G. Mityushin, G.L. Kurdyumov and S.A. Pirogov, Discrete local Markov systems, in Stochastic Cellular Systems: Ergodicity, memory, morphogenesis, edited by R.L. Dobrushin, V.I. Kryukov and A.L. Toom. Manchester University Press, Manchester (1990) 1-182.
- N.B. Vasilyev, Bernoulli and Markov stationary measures in discrete local interactions, Locally interacting systems and their applications in biology. Pushchino (1976), edited by R.L. Dobrushin, V.I. Kryukov and A.L. Toom. Springer, Berlin, Lecture Notes in Math. 653 (1978).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.