Transgression and Clifford algebras
- [1] University of Geneva Department of Mathematics 2-4 rue du Lièvre, c.p. 64 1211 Geneva 4 (Suisse)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 4, page 1337-1358
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topRohr, Rudolf Philippe. "Transgression and Clifford algebras." Annales de l’institut Fourier 59.4 (2009): 1337-1358. <http://eudml.org/doc/10430>.
@article{Rohr2009,
abstract = {Let $W$ be a differential (not necessarily commutative) algebra which carries a free action of a polynomial algebra $SP$ with homogeneous generators $p_1, \dots , p_r$. We show that for $W$ acyclic, the cohomology of the quotient $H(W/$$<\!p_1, \dots , p_r\!>)$ is isomorphic to a Clifford algebra $\text\{Cl\}(P,B)$, where the (possibly degenerate) bilinear form $B$ depends on $W$. This observation is an analogue of an old result of Borel in a non-commutative context. As an application, we study the case of $W$ given by the quantized Weil algebra $\{\mathcal\{W\}(\mathfrak\{g\})\} = U\mathfrak\{g\} \otimes \text\{Cl\}\mathfrak\{g\}$ for $\mathfrak\{g\}$ a reductive Lie algebra. The resulting cohomology of the canonical Weil differential gives a Clifford algebra, but the bilinear form vanishes on the space of primitive invariants of the semi-simple part. As an application, we consider the deformed Weil differential (following Freed, Hopkins and Teleman ).},
affiliation = {University of Geneva Department of Mathematics 2-4 rue du Lièvre, c.p. 64 1211 Geneva 4 (Suisse)},
author = {Rohr, Rudolf Philippe},
journal = {Annales de l’institut Fourier},
keywords = {Lie algebras; Weil algebras; quantized Weil algebras; Clifford algebras; Transgression; classical and quantized Weil algebras; transgression in spectral sequence},
language = {eng},
number = {4},
pages = {1337-1358},
publisher = {Association des Annales de l’institut Fourier},
title = {Transgression and Clifford algebras},
url = {http://eudml.org/doc/10430},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Rohr, Rudolf Philippe
TI - Transgression and Clifford algebras
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 4
SP - 1337
EP - 1358
AB - Let $W$ be a differential (not necessarily commutative) algebra which carries a free action of a polynomial algebra $SP$ with homogeneous generators $p_1, \dots , p_r$. We show that for $W$ acyclic, the cohomology of the quotient $H(W/$$<\!p_1, \dots , p_r\!>)$ is isomorphic to a Clifford algebra $\text{Cl}(P,B)$, where the (possibly degenerate) bilinear form $B$ depends on $W$. This observation is an analogue of an old result of Borel in a non-commutative context. As an application, we study the case of $W$ given by the quantized Weil algebra ${\mathcal{W}(\mathfrak{g})} = U\mathfrak{g} \otimes \text{Cl}\mathfrak{g}$ for $\mathfrak{g}$ a reductive Lie algebra. The resulting cohomology of the canonical Weil differential gives a Clifford algebra, but the bilinear form vanishes on the space of primitive invariants of the semi-simple part. As an application, we consider the deformed Weil differential (following Freed, Hopkins and Teleman ).
LA - eng
KW - Lie algebras; Weil algebras; quantized Weil algebras; Clifford algebras; Transgression; classical and quantized Weil algebras; transgression in spectral sequence
UR - http://eudml.org/doc/10430
ER -
References
top- A. Alekseev, E. Meinrenken, The non-commutative Weil algebra, Invent. math. 139 (2000), 135-172 Zbl0945.57017MR1728878
- A. Alekseev, E. Meinrenken, Lie theory and the Chern-Weil homomorphism, Ann. Scient. Éc. Norm. Sup. 38 (2005), 303-308 Zbl1105.17015MR2144989
- Y. Bazlov, Exterior powers of the adjoint representation of a simple Lie algebra, (2003)
- A. Borel, Sur la cohomologie des espaces fibres principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207 Zbl0052.40001MR51508
- C. Chevalley, Invariants of Finite Groups Generated by Reflections, American Journal of Mathematics 77 (1955), 778-782 Zbl0065.26103MR72877
- J. Diximier, Enveloping Algebras, (1977), North-Holland Publishing Company MR498740
- M. Duflo, Opérateurs différentiels bi-invariants sur un groupe de Lie, Ann. Sci. École Norm. Sup. (4) 10 (1977), 265-288 Zbl0353.22009MR444841
- D. S. Freed, M. J. Hopkins, C. Teleman, Loop Groups and Twisted K-Theory II
- V. W. Guillemin, S. Sternberg, Supersymmetry and Equivariant de Rham Theory, (1999), Springer Zbl0934.55007MR1689252
- B. Kostant, Lie Groups Representation on Polynomial Rings, American Journal of Mathematics 85 (1963), 327-404 Zbl0124.26802
- B. Kostant, Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the -decomposition C End V CP), and the -module structure of , Adv. in Math. 125 (1997), 275-350 Zbl0882.17002MR1434113
- S. Lang, Algebra, (1993), Addison-Wesley Zbl0848.13001MR197234
- J. McCleary, A User’s Guide to Spectral Sequences, (2001), Cambridge University Press Zbl0959.55001MR1793722
- Nicolas Bourbaki, Lie groups and Lie algebras, (1989), Springer-Verlag Zbl0672.22001MR979493
- Nicolas Bourbaki, Algebra II, Chapter 7, (1990), Springer-Verlag
- E. H. Spanier, Algebraic Topology, (1966), McGraw-Hill Zbl0145.43303MR210112
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.