Perturbative expansions in quantum mechanics
- [1] 2A, avenue Édouard Herriot 91440 Bures-sur-Yvette (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 5, page 2061-2101
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGaray, Mauricio D.. "Perturbative expansions in quantum mechanics." Annales de l’institut Fourier 59.5 (2009): 2061-2101. <http://eudml.org/doc/10447>.
@article{Garay2009,
abstract = {We prove a $D=1$ analytic versal deformation theorem in the Heisenberg algebra. We define the spectrum of an element in the Heisenberg algebra. The quantised version of the Morse lemma already shows that the perturbation series arising in a perturbed harmonic oscillator become analytic after a formal Borel transform.},
affiliation = {2A, avenue Édouard Herriot 91440 Bures-sur-Yvette (France)},
author = {Garay, Mauricio D.},
journal = {Annales de l’institut Fourier},
keywords = {Harmonic oscillator; Borel summability; micro-local analysis; non-commutative geometry; harmonic oscillator},
language = {eng},
number = {5},
pages = {2061-2101},
publisher = {Association des Annales de l’institut Fourier},
title = {Perturbative expansions in quantum mechanics},
url = {http://eudml.org/doc/10447},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Garay, Mauricio D.
TI - Perturbative expansions in quantum mechanics
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 5
SP - 2061
EP - 2101
AB - We prove a $D=1$ analytic versal deformation theorem in the Heisenberg algebra. We define the spectrum of an element in the Heisenberg algebra. The quantised version of the Morse lemma already shows that the perturbation series arising in a perturbed harmonic oscillator become analytic after a formal Borel transform.
LA - eng
KW - Harmonic oscillator; Borel summability; micro-local analysis; non-commutative geometry; harmonic oscillator
UR - http://eudml.org/doc/10447
ER -
References
top- V. I. Arnold, A. N. Varchenko, S. Goussein-Zade, Singularity of differentiable mapping, vol. I
- V. I. Arnold, A. N. Varchenko, S. Goussein-Zade, Singularity of differentiable mapping, vol. II
- G. D. Birkhoff, Dynamical systems, IX (1927), American Mathematical Society, Providence R.I. Zbl53.0732.01MR209095
- M. Born, W. Heisenberg, P. Jordan, Zur Quantenmechaniks II, Z. Phys. 35 (1926), 557-615 Zbl52.0963.01
- M. Born, P. Jordan, Zur Quantenmechaniks, Zeit.für Phys. 34 (1925), 858-888
- N. Bourbaki, Espaces vectoriels topologiques, Hermann (1966) Zbl0145.37702
- E. Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscr. Math. 2 (1970), 103-161 Zbl0186.26101MR267607
- Y. Colin de Verdière, Singular lagrangian manifolds and semi-classical analysis, Duke Math. Journal 116 (2003), 263-298 Zbl1074.53066MR1953293
- Y. Colin de Verdière, B. Parisse, Equilibres instables en régime semi-classique I: concentration micro-locale, Comm. PDE 19 (1994), 1535-1564 Zbl0819.35116MR1294470
- P. Deligne, Déformations de l’algèbre des fonctions d’une variété symplectique: comparaison entre Fedosov et De Wilde, Lecomte, Selecta Math. (N.S.) 1 (1995), 667-697 Zbl0852.58033MR1383583
- J. Dieudonné, L. Schwartz, La dualité dans les espaces et , Annales de l’Institut Fourier 1 (1949), 61-101 Zbl0035.35501
- P. A. M. Dirac, The fundamental equations of quantum mechanics, Proc. Roy. Soc. A 109 (1926), 642-653 Zbl51.0729.01
- D. Eisenbud, Commutative algebra with a view towards algebraic geometry, (1999), Springer Zbl0819.13001MR1322960
- M. D. Garay, Finiteness and constructibility in local analytic geometry Zbl1185.32006
- M. D. Garay, An isochore versal deformation theorem, Topology 43 (2004), 1081-1088 Zbl1100.32010MR2079995
- M. D. Garay, Analytic quantum mechanics, (2005)
- M. D. Garay, Analytic geometry and semi-classical analysis, Proceedings of the Steklov Insitute of Mathematics 259 (2007), 35-59 Zbl1161.58013MR2433676
- A. Grothendieck, Topological vector spaces Zbl0763.46002
- A. Grothendieck, Résumé des résultats essentiels dans la théorie des produits tensoriels topologiques et des espaces nucléaires, Annales de l’Institut Fourier (1952), 73-112 Zbl0055.09705MR61754
- W. Heisenberg, Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, Zeitschrift für Physik 33 (1925), 879-893
- B. Helffer, J. Sjöstrand, Semiclassical analysis for Harper’s equation. III. Cantor structure of the spectrum, Mémoire de la Société Mathématique de France 39 (1989), 1-124 Zbl0725.34099MR1041490
- C. Houzel, Espaces analytiques relatifs et théorème de finitude, Math. Annalen 205 (1973), 13-54 Zbl0264.32012MR393552
- R. Kiehl, J. L. Verdier, Ein Einfacher Beweis des Kohärenzsatzes von Grauert, Math. Annalen 195 (1971), 24-50 Zbl0223.32010MR306555
- E. J. N. Looijenga, Isolated singular points on complete intersections, Lect. Notes Series (1984), PressCambridge UniversityC. U. Zbl0552.14002MR747303
- B. Malgrange, Intégrales asymptotiques et monodromie, Ann. Scient. École Norm. Sup. 7 (1974), 405-430 Zbl0305.32008MR372243
- B. Malgrange, Sommation des séries divergentes, Expositiones Mathematicae 13 (1995), 163-222 Zbl0836.40004MR1346201
- J. Martinet, Singularities of smooth functions and maps, Lecture Notes Series 58 (1982), Cambridge University Press Zbl0522.58006MR671585
- J. Mather, Stratifications and mappings Zbl0253.58005
- J. E. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Philos. Soc. 45 (1949), 99-124 Zbl0031.33601MR29330
- F. Pham, Multiple turning points in exact WKB analysis (variations on a theme of Stokes) Zbl1017.34091
- F. Pham, Resurgence, quantized canonical transformations, and multi-instanton expansions Zbl0686.58032
- P. Polesello, P. Schapira, Stacks of quantization-deformation modules on complex symplectic manifolds, Int. Math. Research Notices 49 (2004), 2637-2664 Zbl1086.53107MR2077680
- M. Reed, B. Simon, Methods of modern mathematical physics, vol. IV, Academic Press (1978) Zbl0401.47001MR493422
- B. Simon, Borel summability of the ground state energy in spatially cutoff , Physical Review letters 25 (1970), 1583-1586 MR395601
- B. Simon, Determination of eigenvalues by divergent perturbation series, Advances in Mathematics 7 (1971), 240-253 Zbl0244.47008MR300138
- J. Sjöstrand, Singularités analytiques microlocales, Astérisque 95 (1982), 1-166 Zbl0524.35007MR699623
- J. Vey, Sur le lemme de Morse, Invent. Math. 40 (1977), 1-9 Zbl0348.58007MR453737
- A. Voros, Exact quantization condition for anharmonic oscillators (in one dimension), J. Phys. A 27 (1994), 4653-4661 Zbl0842.34090MR1294967
- van der Waerden (ed.), Sources of quantum mechanics, (1968), Dover Zbl1140.81002
- J. Zinn-Justin, Multi-instanton contributions in quantum mechanics, 2, Nucl.Phys. B 218 (1983), 333-348 MR702804
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.