Perturbative expansions in quantum mechanics

Mauricio D. Garay[1]

  • [1] 2A, avenue Édouard Herriot 91440 Bures-sur-Yvette (France)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 5, page 2061-2101
  • ISSN: 0373-0956

Abstract

top
We prove a D = 1 analytic versal deformation theorem in the Heisenberg algebra. We define the spectrum of an element in the Heisenberg algebra. The quantised version of the Morse lemma already shows that the perturbation series arising in a perturbed harmonic oscillator become analytic after a formal Borel transform.

How to cite

top

Garay, Mauricio D.. "Perturbative expansions in quantum mechanics." Annales de l’institut Fourier 59.5 (2009): 2061-2101. <http://eudml.org/doc/10447>.

@article{Garay2009,
abstract = {We prove a $D=1$ analytic versal deformation theorem in the Heisenberg algebra. We define the spectrum of an element in the Heisenberg algebra. The quantised version of the Morse lemma already shows that the perturbation series arising in a perturbed harmonic oscillator become analytic after a formal Borel transform.},
affiliation = {2A, avenue Édouard Herriot 91440 Bures-sur-Yvette (France)},
author = {Garay, Mauricio D.},
journal = {Annales de l’institut Fourier},
keywords = {Harmonic oscillator; Borel summability; micro-local analysis; non-commutative geometry; harmonic oscillator},
language = {eng},
number = {5},
pages = {2061-2101},
publisher = {Association des Annales de l’institut Fourier},
title = {Perturbative expansions in quantum mechanics},
url = {http://eudml.org/doc/10447},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Garay, Mauricio D.
TI - Perturbative expansions in quantum mechanics
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 5
SP - 2061
EP - 2101
AB - We prove a $D=1$ analytic versal deformation theorem in the Heisenberg algebra. We define the spectrum of an element in the Heisenberg algebra. The quantised version of the Morse lemma already shows that the perturbation series arising in a perturbed harmonic oscillator become analytic after a formal Borel transform.
LA - eng
KW - Harmonic oscillator; Borel summability; micro-local analysis; non-commutative geometry; harmonic oscillator
UR - http://eudml.org/doc/10447
ER -

References

top
  1. V. I. Arnold, A. N. Varchenko, S. Goussein-Zade, Singularity of differentiable mapping, vol. I 
  2. V. I. Arnold, A. N. Varchenko, S. Goussein-Zade, Singularity of differentiable mapping, vol. II 
  3. G. D. Birkhoff, Dynamical systems, IX (1927), American Mathematical Society, Providence R.I. Zbl53.0732.01MR209095
  4. M. Born, W. Heisenberg, P. Jordan, Zur Quantenmechaniks II, Z. Phys. 35 (1926), 557-615 Zbl52.0963.01
  5. M. Born, P. Jordan, Zur Quantenmechaniks, Zeit.für Phys. 34 (1925), 858-888 
  6. N. Bourbaki, Espaces vectoriels topologiques, Hermann (1966) Zbl0145.37702
  7. E. Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscr. Math. 2 (1970), 103-161 Zbl0186.26101MR267607
  8. Y. Colin de Verdière, Singular lagrangian manifolds and semi-classical analysis, Duke Math. Journal 116 (2003), 263-298 Zbl1074.53066MR1953293
  9. Y. Colin de Verdière, B. Parisse, Equilibres instables en régime semi-classique I: concentration micro-locale, Comm. PDE 19 (1994), 1535-1564 Zbl0819.35116MR1294470
  10. P. Deligne, Déformations de l’algèbre des fonctions d’une variété symplectique: comparaison entre Fedosov et De Wilde, Lecomte, Selecta Math. (N.S.) 1 (1995), 667-697 Zbl0852.58033MR1383583
  11. J. Dieudonné, L. Schwartz, La dualité dans les espaces ( ) et ( ) , Annales de l’Institut Fourier 1 (1949), 61-101 Zbl0035.35501
  12. P. A. M. Dirac, The fundamental equations of quantum mechanics, Proc. Roy. Soc. A 109 (1926), 642-653 Zbl51.0729.01
  13. D. Eisenbud, Commutative algebra with a view towards algebraic geometry, (1999), Springer Zbl0819.13001MR1322960
  14. M. D. Garay, Finiteness and constructibility in local analytic geometry Zbl1185.32006
  15. M. D. Garay, An isochore versal deformation theorem, Topology 43 (2004), 1081-1088 Zbl1100.32010MR2079995
  16. M. D. Garay, Analytic quantum mechanics, (2005) 
  17. M. D. Garay, Analytic geometry and semi-classical analysis, Proceedings of the Steklov Insitute of Mathematics 259 (2007), 35-59 Zbl1161.58013MR2433676
  18. A. Grothendieck, Topological vector spaces Zbl0763.46002
  19. A. Grothendieck, Résumé des résultats essentiels dans la théorie des produits tensoriels topologiques et des espaces nucléaires, Annales de l’Institut Fourier (1952), 73-112 Zbl0055.09705MR61754
  20. W. Heisenberg, Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, Zeitschrift für Physik 33 (1925), 879-893 
  21. B. Helffer, J. Sjöstrand, Semiclassical analysis for Harper’s equation. III. Cantor structure of the spectrum, Mémoire de la Société Mathématique de France 39 (1989), 1-124 Zbl0725.34099MR1041490
  22. C. Houzel, Espaces analytiques relatifs et théorème de finitude, Math. Annalen 205 (1973), 13-54 Zbl0264.32012MR393552
  23. R. Kiehl, J. L. Verdier, Ein Einfacher Beweis des Kohärenzsatzes von Grauert, Math. Annalen 195 (1971), 24-50 Zbl0223.32010MR306555
  24. E. J. N. Looijenga, Isolated singular points on complete intersections, Lect. Notes Series (1984), PressCambridge UniversityC. U. Zbl0552.14002MR747303
  25. B. Malgrange, Intégrales asymptotiques et monodromie, Ann. Scient. École Norm. Sup. 7 (1974), 405-430 Zbl0305.32008MR372243
  26. B. Malgrange, Sommation des séries divergentes, Expositiones Mathematicae 13 (1995), 163-222 Zbl0836.40004MR1346201
  27. J. Martinet, Singularities of smooth functions and maps, Lecture Notes Series 58 (1982), Cambridge University Press Zbl0522.58006MR671585
  28. J. Mather, Stratifications and mappings Zbl0253.58005
  29. J. E. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Philos. Soc. 45 (1949), 99-124 Zbl0031.33601MR29330
  30. F. Pham, Multiple turning points in exact WKB analysis (variations on a theme of Stokes) Zbl1017.34091
  31. F. Pham, Resurgence, quantized canonical transformations, and multi-instanton expansions Zbl0686.58032
  32. P. Polesello, P. Schapira, Stacks of quantization-deformation modules on complex symplectic manifolds, Int. Math. Research Notices 49 (2004), 2637-2664 Zbl1086.53107MR2077680
  33. M. Reed, B. Simon, Methods of modern mathematical physics, vol. IV, Academic Press (1978) Zbl0401.47001MR493422
  34. B. Simon, Borel summability of the ground state energy in spatially cutoff ( ϕ 4 ) 2 , Physical Review letters 25 (1970), 1583-1586 MR395601
  35. B. Simon, Determination of eigenvalues by divergent perturbation series, Advances in Mathematics 7 (1971), 240-253 Zbl0244.47008MR300138
  36. J. Sjöstrand, Singularités analytiques microlocales, Astérisque 95 (1982), 1-166 Zbl0524.35007MR699623
  37. J. Vey, Sur le lemme de Morse, Invent. Math. 40 (1977), 1-9 Zbl0348.58007MR453737
  38. A. Voros, Exact quantization condition for anharmonic oscillators (in one dimension), J. Phys. A 27 (1994), 4653-4661 Zbl0842.34090MR1294967
  39. van der Waerden (ed.), Sources of quantum mechanics, (1968), Dover Zbl1140.81002
  40. J. Zinn-Justin, Multi-instanton contributions in quantum mechanics, 2, Nucl.Phys. B 218 (1983), 333-348 MR702804

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.