Left-Garside categories, self-distributivity, and braids
- [1] Laboratoire de Mathématiques Nicolas Oresme Université de Caen 14032 Caen France
Annales mathématiques Blaise Pascal (2009)
- Volume: 16, Issue: 2, page 189-244
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topDehornoy, Patrick. "Left-Garside categories, self-distributivity, and braids." Annales mathématiques Blaise Pascal 16.2 (2009): 189-244. <http://eudml.org/doc/10576>.
@article{Dehornoy2009,
abstract = {In connection with the emerging theory of Garside categories, we develop the notions of a left-Garside category and of a locally left-Garside monoid. In this framework, the relationship between the self-distributivity law LD and braids amounts to the result that a certain category associated with LD is a left-Garside category, which projects onto the standard Garside category of braids. This approach leads to a realistic program for establishing the Embedding Conjecture of [Dehornoy, Braids and Self-distributivity, Birkhaüser (2000), Chap. IX].},
affiliation = {Laboratoire de Mathématiques Nicolas Oresme Université de Caen 14032 Caen France},
author = {Dehornoy, Patrick},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Garside category; Garside monoid; self-distributivity; braid; greedy normal form; least common multiple; LD-expansion},
language = {eng},
month = {7},
number = {2},
pages = {189-244},
publisher = {Annales mathématiques Blaise Pascal},
title = {Left-Garside categories, self-distributivity, and braids},
url = {http://eudml.org/doc/10576},
volume = {16},
year = {2009},
}
TY - JOUR
AU - Dehornoy, Patrick
TI - Left-Garside categories, self-distributivity, and braids
JO - Annales mathématiques Blaise Pascal
DA - 2009/7//
PB - Annales mathématiques Blaise Pascal
VL - 16
IS - 2
SP - 189
EP - 244
AB - In connection with the emerging theory of Garside categories, we develop the notions of a left-Garside category and of a locally left-Garside monoid. In this framework, the relationship between the self-distributivity law LD and braids amounts to the result that a certain category associated with LD is a left-Garside category, which projects onto the standard Garside category of braids. This approach leads to a realistic program for establishing the Embedding Conjecture of [Dehornoy, Braids and Self-distributivity, Birkhaüser (2000), Chap. IX].
LA - eng
KW - Garside category; Garside monoid; self-distributivity; braid; greedy normal form; least common multiple; LD-expansion
UR - http://eudml.org/doc/10576
ER -
References
top- S.I. Adyan, Fragments of the word Delta in a braid group, Mat. Zametki Acad. Sci. SSSR 36 (1984), 25-34 Zbl0599.20044MR757642
- D. Bessis, Garside categories, periodic loops and cyclic sets
- D. Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. 36 (2003), 647-683 Zbl1064.20039MR2032983
- D. Bessis, A dual braid monoid for the free group, J. Algebra 302 (2006), 55-69 Zbl1181.20049MR2236594
- D. Bessis, Ruth Corran, Garside structure for the braid group of G(e,e,r) Zbl1128.20024
- J. Birman, V. Gebhardt, J. González-Meneses, Conjugacy in Garside groups I: Cyclings, powers and rigidity, Groups Geom. Dyn. 1 (2007), 221-279 Zbl1160.20026MR2314045
- J. Birman, V. Gebhardt, J. González-Meneses, Conjugacy in Garside groups III: Periodic braids, J. Algebra 316 (2007), 746-776 Zbl1165.20031MR2358613
- J. Birman, V. Gebhardt, J. González-Meneses, Conjugacy in Garside groups II: Structure of the ultra summit set, Groups Geom. Dyn. 2 (2008), 16-31 Zbl1163.20023MR2367207
- J. Birman, K.H. Ko, S.J. Lee, A new approach to the word problem in the braid groups, Adv. Math. 139 (1998), 322-353 Zbl0937.20016MR1654165
- E. Brieskorn, K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245-271 Zbl0243.20037MR323910
- J.W. Cannon, W.J. Floyd, W.R. Parry, Introductory notes on Richard Thompson’s groups, Enseign. Math. 42 (1996), 215-257 Zbl0880.20027MR1426438
- R. Charney, Artin groups of finite type are biautomatic, Math. Ann. 292 (1992), 671-683 Zbl0736.57001MR1157320
- R. Charney, J. Meier, The language of geodesics for Garside groups, Math. Zeitschr. 248 (2004), 495-509 Zbl1062.57002MR2097371
- R. Charney, J. Meier, K. Whittlesey, Bestvina’s normal form complex and the homology of Garside groups, Geom. Dedicata 105 (2004), 171-188 Zbl1064.20044MR2057250
- J. Crisp, L. Paris, Representations of the braid group by automorphisms of groups, invariants of links, and Garside groups, Pac. J. Maths 221 (2005), 1-27 Zbl1147.20033MR2194143
- P. Dehornoy, -complete families of elementary sequences, Ann. P. Appl. Logic 38 (1988), 257-287 Zbl0646.03030MR942526
- P. Dehornoy, Free distributive groupoids, J. Pure Appl. Algebra 61 (1989), 123-146 Zbl0686.20041MR1025918
- P. Dehornoy, Braids and Self-Distributivity, 192 (2000), Birkhäuser Zbl0958.20033MR1778150
- P. Dehornoy, Groupes de Garside, Ann. Sci. École Norm. Sup. (4) 35 (2002), 267-306 Zbl1017.20031MR1914933
- P. Dehornoy, Study of an identity, Algebra Universalis 48 (2002), 223-248 Zbl1058.03043MR1929906
- P. Dehornoy, Complete positive group presentations, J. Algebra 268 (2003), 156-197 Zbl1067.20035MR2004483
- P. Dehornoy, Geometric presentations of Thompson’s groups, J. Pure Appl. Algebra 203 (2005), 1-44 Zbl1150.20016MR2176650
- P. Dehornoy, L. Paris, Gaussian groups and Garside groups, two generalisations of Artin groups, Proc. London Math. Soc. 79 (1999), 569-604 Zbl1030.20021MR1710165
- P. Dehornoy, with I. Dynnikov, D. Rolfsen, and B. Wiest, Ordering braids, (2008), Math. Surveys and Monographs vol. 148, Amer. Math. Soc. Zbl1163.20024MR2463428
- P. Deligne, G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. 103 (1976), 103-161 Zbl0336.20029MR393266
- F. Digne, Présentations duales pour les groupes de tresses de type affine , Comm. Math. Helvetici 8 (2008), 23-47 Zbl1143.20020MR2208796
- F. Digne, J. Michel, Garside and locally Garside categories Zbl1294.18003
- E.A. El-Rifai, H.R. Morton, Algorithms for positive braids, Quart. J. Math. Oxford Ser. 45 (1994), 479-497 Zbl0839.20051MR1315459
- D. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson, W.P. Thurston, Word Processing in Groups, (1992), Jones and Bartlett Publ. Zbl0764.20017MR1161694
- R. Fenn, C.P. Rourke, Racks and links in codimension 2, J. Knot Theory Ramifications 1 (1992), 343-406 Zbl0787.57003MR1194995
- N. Franco, J. González-Meneses, Conjugacy problem for braid groups and Garside groups, J. Algebra 266 (2003), 112-132 Zbl1043.20019MR1994532
- F.A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. 20 (1969), 235-254 Zbl0194.03303MR248801
- V. Gebhardt, A new approach to the conjugacy problem in Garside groups, J. Algebra 292 (2005), 282-302 Zbl1105.20032MR2166805
- E. Godelle, Parabolic subgroups of Garside groups II Zbl1229.20032
- E. Godelle, Normalisateurs et centralisateurs des sous-groupes paraboliques dans les groupes d’Artin-Tits, (2001)
- E. Godelle, Parabolic subgroups of Garside groups, J. Algebra 317 (2007), 1-16 Zbl1173.20027MR2360138
- D. Joyce, A classifying invariant of knots: the knot quandle, J. Pure Appl. Algebra 23 (1982), 37-65 Zbl0474.57003MR638121
- C. Kassel, V. Turaev, Braid groups, (2008), Springer Verlag Zbl1208.20041MR2435235
- D. Krammer, A class of Garside groupoid structures on the pure braid group, Trans. Amer. Math. Soc. 360 (2008), 4029-4061 Zbl1194.20040MR2395163
- S. Mac Lane, Categories for the Working Mathematician, (1998), Springer Verlag Zbl0906.18001MR1712872
- R. Laver, The left distributive law and the freeness of an algebra of elementary embeddings, Adv. Math. 91 (1992), 209-231 Zbl0822.03030MR1149623
- E.K. Lee, S.J. Lee, A Garside-theoretic approach to the reducibility problem in braid groups, J. Algebra 320 (2008), 783-820 Zbl1191.20034MR2422316
- S.J. Lee, Garside groups are strongly translation discrete, J. Algebra 309 (2007), 594-609 Zbl1155.20038MR2303195
- S.V. Matveev, Distributive groupoids in knot theory, Sb. Math. 119 (1982), 78-88 Zbl0523.57006MR672410
- J. McCammond, An introduction to Garside structures, (2005)
- M. Picantin, Garside monoids vs. divisibility monoids, Math. Struct. in Comp. Sci. 15 (2005), 231-242 Zbl1067.20074MR2132017
- H. Sibert, Tame Garside monoids, J. Algebra 281 (2004), 487-501 Zbl1065.20049MR2098379
- W. Thurston, Finite state algorithms for the braid group, (1988)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.