Basic results on braid groups
- [1] Departamento de Álgebra Facultad de Matemáticas Universidad de Sevilla Apdo. 1160 41080 - Sevilla SPAIN
Annales mathématiques Blaise Pascal (2011)
- Volume: 18, Issue: 1, page 15-59
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topReferences
top- J. W. Alexander, On the Deformation of an n-Cell, Proc. of the Nat. Acad. of Sci. of the USA. 9 (12) (1923), 406-407
- E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Hamburgischen Univ. 4 (1925), 47-72
- E. Artin, The theory of braids, Annals of Math. 48 (1947), 101-126 Zbl0030.17703MR19087
- L. Bacardit, W. Dicks, Actions of the braid group, and new algebraic proofs of results of Dehornoy and Larue, Groups - Complexity - Criptology 1 (2009), 77-129 Zbl1195.20041MR2502938
- G. Baumslag, Automorphisms groups of residually finite groups, J. London Math. Soc. 38 (1963), 117-118 Zbl0124.26003MR146271
- D. Bessis, Garside categories, periodic loops and cyclic sets, (2006)
- D. Bessis, F. Digne, J. Michel, Springer theory in braid groups and the Birman-Ko-Lee monoid, Pacific J. Math. 205 (2) (2002), 287-309 Zbl1056.20023MR1922736
- S. J. Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2) (2001), 471-486 Zbl0988.20021MR1815219
- J. S. Birman, braids, links and mapping class groups. Annals of Mathematics Studies, No. 82., (1974), Princeton University Press, Princeton, N.J. Zbl0305.57013MR375281
- J. S. Birman, V. Gebhardt, J. González-Meneses, Conjugacy in Garside groups. I. Cyclings, powers and rigidity, Groups Geom. Dyn. 1 (3) (2007), 221-279 Zbl1160.20026MR2314045
- J. S. Birman, V. Gebhardt, J. González-Meneses, Conjugacy in Garside groups. III. Periodic braids, J. Algebra 316 (2) (2007), 746-776 Zbl1165.20031MR2358613
- J. S. Birman, K.-H. Ko, S. J. Lee, A new approach to the word and conjugacy problems in the braid groups, Adv. Math. 139 (2) (1998), 322-353 Zbl0937.20016MR1654165
- J. S. Birman, A. Lubotzky, J. McCarthy, Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (4) (1983), 1107-1120 Zbl0551.57004MR726319
- F. Bohnenblust, The algebraical braid group, Ann. of Math. (2) 48 (1947), 127-136 Zbl0030.17801MR19088
- Wieb Bosma, John Cannon, Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265 Zbl0898.68039MR1484478
- E. Brieskorn, K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245-271 Zbl0243.20037MR323910
- J. C. Cha, C. Livingstone, M. Durbin, Braid group calculator
- R. Charney, Artin groups of finite type are biautomatic, Math. Ann. 292 (4) (1992), 671-683 Zbl0736.57001MR1157320
- W.-L. Chow, On the algebraical braid group, Ann. of Math. (2) 49 (1948), 654-658 Zbl0033.01002MR26050
- A. M. Cohen, D. B. Wales, Linearity of Artin groups of finite type, Israel J. Math. 131 (2002), 101-123 Zbl1078.20038MR1942303
- A. Constantin, B. Kolev, The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere, L’Enseign. Math. 40 (1994), 193-204 Zbl0852.57012MR1309126
- P. Dehornoy, Braid groups and left distributive operations, Trans. Amer. Math. Soc. 345 (1) (1994), 115-150 Zbl0837.20048MR1214782
- P. Dehornoy, Left-Garside categories, self-distributivity, and braids, Ann. Math. Blaise Pascal 16 (2009), 189-244 Zbl1183.18004MR2568862
- P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Why are braids orderable?, (2002), Panoramas et Synthèses 14. Société Mathématique de France, Paris Zbl1048.20021MR1988550
- P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Ordering braids, (2008), Mathematical Surveys and Monographs, 148. American Mathematical Society, Providence, RI Zbl1163.20024MR2463428
- P. Dehornoy, L. Paris, Gaussian groups and Garside groups, two generalisations of Artin groups., Proc. London Math. Soc. (3) 79 (3) (1999), 569-604 Zbl1030.20021MR1710165
- F. Digne, On the linearity of Artin braid groups, J. Algebra 268 (1) (2003), 39-57 Zbl1066.20044MR2004479
- F. Digne, J. Michel, Garside and locally Garside categories, (2006) Zbl1294.18003
- S. Eilenberg, Sur les transformations périodiques de la surface de la sphère, Fund. Math. 22 (1934), 28-44 Zbl0008.37109
- E. A. El-Rifai, H. R. Morton, Algorithms for positive braids, Quart. J. Math. Oxford Ser. (2) 45 (180) (1994), 479-497 Zbl0839.20051MR1315459
- D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, W. P. Thurston, Word processing in groups, (1992), Jones and Bartlett Publishers, Boston, MA Zbl0764.20017MR1161694
- E. Fadell, L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118 Zbl0136.44104MR141126
- E. Fadell, J. Van Buskirk, The braid groups of and , Duke Math. J. 29 (1962), 243-257 Zbl0122.17804MR141128
- R. Fenn, M. T. Greene, D. Rolfsen, C. Rourke, B. Wiest, Ordering the braid groups, Pacific J. of Math. 191 (1) (1999), 49-74 Zbl1009.20042MR1725462
- R. Fox, L. Neuwirth, The braid groups, Math. Scand. 10 (1962), 119-126 Zbl0117.41101MR150755
- N. Franco, J. González-Meneses, Conjugacy problem for braid groups and Garside groups, J. Algebra 266 (1) (2003), 112-132 Zbl1043.20019MR1994532
- F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235-254 Zbl0194.03303MR248801
- V. Gebhardt, A new approach to the conjugacy problem in Garside groups, J. Algebra 292 (1) (2005), 282-302 Zbl1105.20032MR2166805
- Volker Gebhardt, Juan González-Meneses, The cyclic sliding operation in Garside groups, Math. Z. 265 (2010), 85-114 Zbl1253.20034MR2606950
- Volker Gebhardt, Juan González-Meneses, Solving the conjugacy problem in Garside groups by cyclic sliding, Journal of Symbolic Computation 45 (2010), 629-656 Zbl1235.20032MR2639308
- M. Geck, G. Hiß, F. Lübeck, G. Malle, J. Michel, G. Pfeiffer, CHEVIE: computer algebra package for GAP3. Zbl0847.20006
- J. González-Meneses, Personal web page
- J. González-Meneses, The n-th root of a braid is unique up to conjugacy, Alg. and Geom. Topology 3 (2003), 1103-1118 Zbl1063.20041MR2012967
- J. González-Meneses, On reduction curves and Garside properties of braids, Contemporary Mathematics 538 (2011), 227-244 Zbl1255.20035
- J. González-Meneses, B. Wiest, On the structure of the centralizer of a braid, Ann. Sci. École Norm. Sup. (4) 37 (5) (2004), 729-757 Zbl1082.20024MR2103472
- M. Hall, Subgroups of finite index in free groups, Canadian J. of Math. 1 (1949), 187-190 Zbl0031.34001MR28836
- Jean-Yves Hée, Une démonstration simple de la fidélité de la représentation de Lawrence-Krammer-Paris, J. Algebra 321 (2009), 1039-1048 Zbl1163.20025MR2488566
- A. Hurwitz, Über Riemannsche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1) (1891), 1-60 MR1510692
- N. V. Ivanov, Subgroups of Teichmüller modular groups, (1992), Translations of Mathematical Monographs, 115. American Mathematical Society, Providence, RI Zbl0776.57001MR1195787
- C Kassel, V. Turaev, Braid groups, (2008), Graduate Texts in Mathematics, 247. Springer, New York Zbl1208.20041MR2435235
- B. von Kerékjártó, Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche, Math. Ann. 80 (1919-1920), 36-38 Zbl47.0526.05MR1511945
- D. Krammer, The braid group is linear, Invent. Math. 142 (3) (2000), 451-486 Zbl0988.20023MR1804157
- D. Krammer, Braid groups are linear, Ann. of Math. (2) 155 (1) (2002), 131-156 Zbl1020.20025MR1888796
- D. Krammer, A class of Garside groupoid structures on the pure braid group, (2005) Zbl1194.20040
- E.-K. Lee, S. J. Lee, A Garside-theoretic approach to the reducibility problem in braid groups, J. Algebra 320 (2) (2008), 783-820 Zbl1191.20034MR2422316
- F. Levi, Über die Untergruppen der freien gruppen II, Math. Z. 37 (1933), 90-97 Zbl59.0142.03MR1545385
- W. Magnus, Über Automorphismen von Fundamentalgruppen berandeter Flächen., Math. Ann. 109 (1934), 617-646 Zbl60.0091.01MR1512913
- W. Magnus, Residually finite groups, Bull. Amer. Math. Soc. 75 (1969), 305-316 Zbl0196.04704MR241525
- W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory, (1966), Interscience Publishers (John Wiley & Sons, Inc.), New York-London-Sydney Zbl0138.25604MR207802
- A. I. Mal’cev, On isomorphic matrix representations of infinite groups, Mat. Sb. 182 (1940), 142-149
- I. Marin, On the residual nilpotence of pure Artin groups, J. Group Theory 9 (4) (2006), 483-485 Zbl1103.20035MR2243240
- A. Markoff, Foundations of the algebraic theory of tresses. (Russian), Trav. Inst. Math. Stekloff 16 (1945) Zbl0061.02507MR17279
- J. D. McCarthy, Normalizers and Centralizers of pseudo-Anosov mapping classes, (1982)
- J. Nielsen, Abbildungsklassen endlicher Ordnung, Acta Math. 75 (1943), 23-115 Zbl0027.26601MR13306
- O. Ore, Linear equations in non-commutative fields, Ann. of Math. (2) 32 (3) (1931), 463-477 Zbl0001.26601MR1503010
- P. Orlik, H. Terao, Arrangements of hyperplanes., (1992), Grundlehren der Mathematischen Wissenschaften, 300. Springer-Verlag, Berlin Zbl0757.55001MR1217488
- L. Paris, Artin monoids inject in their groups, Commen. Math. Helv. 77 (3) (2002), 609-637 Zbl1020.20026MR1933791
- L. Paris, Braid groups and Artin groups, Handbook of Teichmüller theory. Vol. II (2009), 389-451, Papadopoulos.A.A. Zbl1230.20040MR2497781
- W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (2) (1988), 417-431 Zbl0674.57008MR956596
- O. Zariski, On the Poincaré group of rational plane curves, Amer. J. of Math. 58 (3) (1936), 607-619 Zbl0014.32801MR1507185