Basic results on braid groups
- [1] Departamento de Álgebra Facultad de Matemáticas Universidad de Sevilla Apdo. 1160 41080 - Sevilla SPAIN
Annales mathématiques Blaise Pascal (2011)
- Volume: 18, Issue: 1, page 15-59
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topGonzález-Meneses, Juan. "Basic results on braid groups." Annales mathématiques Blaise Pascal 18.1 (2011): 15-59. <http://eudml.org/doc/219712>.
@article{González2011,
abstract = {These are Lecture Notes of a course given by the author at the French-Spanish School Tresses in Pau, held in Pau (France) in October 2009. It is basically an introduction to distinct approaches and techniques that can be used to show results in braid groups. Using these techniques we provide several proofs of well known results in braid groups, namely the correctness of Artin’s presentation, that the braid group is torsion free, or that its center is generated by the full twist. We also recall some solutions of the word and conjugacy problems, and that roots of a braid are always conjugate. We also describe the centralizer of a given braid. Most proofs are classical ones, using modern terminology. I have chosen those which I find simpler or more beautiful.},
affiliation = {Departamento de Álgebra Facultad de Matemáticas Universidad de Sevilla Apdo. 1160 41080 - Sevilla SPAIN},
author = {González-Meneses, Juan},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Braids; torsion-free; presentation; Garside; Nielsen-Thurston theory; braid groups; torsion freeness; Dehornoy theorem; orderability; Artin presentations; word problem; conjugacy problem; linearity; centralizers; roots},
language = {eng},
month = {1},
number = {1},
pages = {15-59},
publisher = {Annales mathématiques Blaise Pascal},
title = {Basic results on braid groups},
url = {http://eudml.org/doc/219712},
volume = {18},
year = {2011},
}
TY - JOUR
AU - González-Meneses, Juan
TI - Basic results on braid groups
JO - Annales mathématiques Blaise Pascal
DA - 2011/1//
PB - Annales mathématiques Blaise Pascal
VL - 18
IS - 1
SP - 15
EP - 59
AB - These are Lecture Notes of a course given by the author at the French-Spanish School Tresses in Pau, held in Pau (France) in October 2009. It is basically an introduction to distinct approaches and techniques that can be used to show results in braid groups. Using these techniques we provide several proofs of well known results in braid groups, namely the correctness of Artin’s presentation, that the braid group is torsion free, or that its center is generated by the full twist. We also recall some solutions of the word and conjugacy problems, and that roots of a braid are always conjugate. We also describe the centralizer of a given braid. Most proofs are classical ones, using modern terminology. I have chosen those which I find simpler or more beautiful.
LA - eng
KW - Braids; torsion-free; presentation; Garside; Nielsen-Thurston theory; braid groups; torsion freeness; Dehornoy theorem; orderability; Artin presentations; word problem; conjugacy problem; linearity; centralizers; roots
UR - http://eudml.org/doc/219712
ER -
References
top- J. W. Alexander, On the Deformation of an n-Cell, Proc. of the Nat. Acad. of Sci. of the USA. 9 (12) (1923), 406-407
- E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Hamburgischen Univ. 4 (1925), 47-72
- E. Artin, The theory of braids, Annals of Math. 48 (1947), 101-126 Zbl0030.17703MR19087
- L. Bacardit, W. Dicks, Actions of the braid group, and new algebraic proofs of results of Dehornoy and Larue, Groups - Complexity - Criptology 1 (2009), 77-129 Zbl1195.20041MR2502938
- G. Baumslag, Automorphisms groups of residually finite groups, J. London Math. Soc. 38 (1963), 117-118 Zbl0124.26003MR146271
- D. Bessis, Garside categories, periodic loops and cyclic sets, (2006)
- D. Bessis, F. Digne, J. Michel, Springer theory in braid groups and the Birman-Ko-Lee monoid, Pacific J. Math. 205 (2) (2002), 287-309 Zbl1056.20023MR1922736
- S. J. Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2) (2001), 471-486 Zbl0988.20021MR1815219
- J. S. Birman, braids, links and mapping class groups. Annals of Mathematics Studies, No. 82., (1974), Princeton University Press, Princeton, N.J. Zbl0305.57013MR375281
- J. S. Birman, V. Gebhardt, J. González-Meneses, Conjugacy in Garside groups. I. Cyclings, powers and rigidity, Groups Geom. Dyn. 1 (3) (2007), 221-279 Zbl1160.20026MR2314045
- J. S. Birman, V. Gebhardt, J. González-Meneses, Conjugacy in Garside groups. III. Periodic braids, J. Algebra 316 (2) (2007), 746-776 Zbl1165.20031MR2358613
- J. S. Birman, K.-H. Ko, S. J. Lee, A new approach to the word and conjugacy problems in the braid groups, Adv. Math. 139 (2) (1998), 322-353 Zbl0937.20016MR1654165
- J. S. Birman, A. Lubotzky, J. McCarthy, Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (4) (1983), 1107-1120 Zbl0551.57004MR726319
- F. Bohnenblust, The algebraical braid group, Ann. of Math. (2) 48 (1947), 127-136 Zbl0030.17801MR19088
- Wieb Bosma, John Cannon, Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265 Zbl0898.68039MR1484478
- E. Brieskorn, K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245-271 Zbl0243.20037MR323910
- J. C. Cha, C. Livingstone, M. Durbin, Braid group calculator
- R. Charney, Artin groups of finite type are biautomatic, Math. Ann. 292 (4) (1992), 671-683 Zbl0736.57001MR1157320
- W.-L. Chow, On the algebraical braid group, Ann. of Math. (2) 49 (1948), 654-658 Zbl0033.01002MR26050
- A. M. Cohen, D. B. Wales, Linearity of Artin groups of finite type, Israel J. Math. 131 (2002), 101-123 Zbl1078.20038MR1942303
- A. Constantin, B. Kolev, The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere, L’Enseign. Math. 40 (1994), 193-204 Zbl0852.57012MR1309126
- P. Dehornoy, Braid groups and left distributive operations, Trans. Amer. Math. Soc. 345 (1) (1994), 115-150 Zbl0837.20048MR1214782
- P. Dehornoy, Left-Garside categories, self-distributivity, and braids, Ann. Math. Blaise Pascal 16 (2009), 189-244 Zbl1183.18004MR2568862
- P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Why are braids orderable?, (2002), Panoramas et Synthèses 14. Société Mathématique de France, Paris Zbl1048.20021MR1988550
- P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Ordering braids, (2008), Mathematical Surveys and Monographs, 148. American Mathematical Society, Providence, RI Zbl1163.20024MR2463428
- P. Dehornoy, L. Paris, Gaussian groups and Garside groups, two generalisations of Artin groups., Proc. London Math. Soc. (3) 79 (3) (1999), 569-604 Zbl1030.20021MR1710165
- F. Digne, On the linearity of Artin braid groups, J. Algebra 268 (1) (2003), 39-57 Zbl1066.20044MR2004479
- F. Digne, J. Michel, Garside and locally Garside categories, (2006) Zbl1294.18003
- S. Eilenberg, Sur les transformations périodiques de la surface de la sphère, Fund. Math. 22 (1934), 28-44 Zbl0008.37109
- E. A. El-Rifai, H. R. Morton, Algorithms for positive braids, Quart. J. Math. Oxford Ser. (2) 45 (180) (1994), 479-497 Zbl0839.20051MR1315459
- D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, W. P. Thurston, Word processing in groups, (1992), Jones and Bartlett Publishers, Boston, MA Zbl0764.20017MR1161694
- E. Fadell, L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118 Zbl0136.44104MR141126
- E. Fadell, J. Van Buskirk, The braid groups of and , Duke Math. J. 29 (1962), 243-257 Zbl0122.17804MR141128
- R. Fenn, M. T. Greene, D. Rolfsen, C. Rourke, B. Wiest, Ordering the braid groups, Pacific J. of Math. 191 (1) (1999), 49-74 Zbl1009.20042MR1725462
- R. Fox, L. Neuwirth, The braid groups, Math. Scand. 10 (1962), 119-126 Zbl0117.41101MR150755
- N. Franco, J. González-Meneses, Conjugacy problem for braid groups and Garside groups, J. Algebra 266 (1) (2003), 112-132 Zbl1043.20019MR1994532
- F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235-254 Zbl0194.03303MR248801
- V. Gebhardt, A new approach to the conjugacy problem in Garside groups, J. Algebra 292 (1) (2005), 282-302 Zbl1105.20032MR2166805
- Volker Gebhardt, Juan González-Meneses, The cyclic sliding operation in Garside groups, Math. Z. 265 (2010), 85-114 Zbl1253.20034MR2606950
- Volker Gebhardt, Juan González-Meneses, Solving the conjugacy problem in Garside groups by cyclic sliding, Journal of Symbolic Computation 45 (2010), 629-656 Zbl1235.20032MR2639308
- M. Geck, G. Hiß, F. Lübeck, G. Malle, J. Michel, G. Pfeiffer, CHEVIE: computer algebra package for GAP3. Zbl0847.20006
- J. González-Meneses, Personal web page
- J. González-Meneses, The n-th root of a braid is unique up to conjugacy, Alg. and Geom. Topology 3 (2003), 1103-1118 Zbl1063.20041MR2012967
- J. González-Meneses, On reduction curves and Garside properties of braids, Contemporary Mathematics 538 (2011), 227-244 Zbl1255.20035
- J. González-Meneses, B. Wiest, On the structure of the centralizer of a braid, Ann. Sci. École Norm. Sup. (4) 37 (5) (2004), 729-757 Zbl1082.20024MR2103472
- M. Hall, Subgroups of finite index in free groups, Canadian J. of Math. 1 (1949), 187-190 Zbl0031.34001MR28836
- Jean-Yves Hée, Une démonstration simple de la fidélité de la représentation de Lawrence-Krammer-Paris, J. Algebra 321 (2009), 1039-1048 Zbl1163.20025MR2488566
- A. Hurwitz, Über Riemannsche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1) (1891), 1-60 MR1510692
- N. V. Ivanov, Subgroups of Teichmüller modular groups, (1992), Translations of Mathematical Monographs, 115. American Mathematical Society, Providence, RI Zbl0776.57001MR1195787
- C Kassel, V. Turaev, Braid groups, (2008), Graduate Texts in Mathematics, 247. Springer, New York Zbl1208.20041MR2435235
- B. von Kerékjártó, Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche, Math. Ann. 80 (1919-1920), 36-38 Zbl47.0526.05MR1511945
- D. Krammer, The braid group is linear, Invent. Math. 142 (3) (2000), 451-486 Zbl0988.20023MR1804157
- D. Krammer, Braid groups are linear, Ann. of Math. (2) 155 (1) (2002), 131-156 Zbl1020.20025MR1888796
- D. Krammer, A class of Garside groupoid structures on the pure braid group, (2005) Zbl1194.20040
- E.-K. Lee, S. J. Lee, A Garside-theoretic approach to the reducibility problem in braid groups, J. Algebra 320 (2) (2008), 783-820 Zbl1191.20034MR2422316
- F. Levi, Über die Untergruppen der freien gruppen II, Math. Z. 37 (1933), 90-97 Zbl59.0142.03MR1545385
- W. Magnus, Über Automorphismen von Fundamentalgruppen berandeter Flächen., Math. Ann. 109 (1934), 617-646 Zbl60.0091.01MR1512913
- W. Magnus, Residually finite groups, Bull. Amer. Math. Soc. 75 (1969), 305-316 Zbl0196.04704MR241525
- W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory, (1966), Interscience Publishers (John Wiley & Sons, Inc.), New York-London-Sydney Zbl0138.25604MR207802
- A. I. Mal’cev, On isomorphic matrix representations of infinite groups, Mat. Sb. 182 (1940), 142-149
- I. Marin, On the residual nilpotence of pure Artin groups, J. Group Theory 9 (4) (2006), 483-485 Zbl1103.20035MR2243240
- A. Markoff, Foundations of the algebraic theory of tresses. (Russian), Trav. Inst. Math. Stekloff 16 (1945) Zbl0061.02507MR17279
- J. D. McCarthy, Normalizers and Centralizers of pseudo-Anosov mapping classes, (1982)
- J. Nielsen, Abbildungsklassen endlicher Ordnung, Acta Math. 75 (1943), 23-115 Zbl0027.26601MR13306
- O. Ore, Linear equations in non-commutative fields, Ann. of Math. (2) 32 (3) (1931), 463-477 Zbl0001.26601MR1503010
- P. Orlik, H. Terao, Arrangements of hyperplanes., (1992), Grundlehren der Mathematischen Wissenschaften, 300. Springer-Verlag, Berlin Zbl0757.55001MR1217488
- L. Paris, Artin monoids inject in their groups, Commen. Math. Helv. 77 (3) (2002), 609-637 Zbl1020.20026MR1933791
- L. Paris, Braid groups and Artin groups, Handbook of Teichmüller theory. Vol. II (2009), 389-451, Papadopoulos.A.A. Zbl1230.20040MR2497781
- W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (2) (1988), 417-431 Zbl0674.57008MR956596
- O. Zariski, On the Poincaré group of rational plane curves, Amer. J. of Math. 58 (3) (1936), 607-619 Zbl0014.32801MR1507185
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.