Basic results on braid groups

Juan González-Meneses[1]

  • [1] Departamento de Álgebra Facultad de Matemáticas Universidad de Sevilla Apdo. 1160 41080 - Sevilla SPAIN

Annales mathématiques Blaise Pascal (2011)

  • Volume: 18, Issue: 1, page 15-59
  • ISSN: 1259-1734

Abstract

top
These are Lecture Notes of a course given by the author at the French-Spanish School Tresses in Pau, held in Pau (France) in October 2009. It is basically an introduction to distinct approaches and techniques that can be used to show results in braid groups. Using these techniques we provide several proofs of well known results in braid groups, namely the correctness of Artin’s presentation, that the braid group is torsion free, or that its center is generated by the full twist. We also recall some solutions of the word and conjugacy problems, and that roots of a braid are always conjugate. We also describe the centralizer of a given braid. Most proofs are classical ones, using modern terminology. I have chosen those which I find simpler or more beautiful.

How to cite

top

González-Meneses, Juan. "Basic results on braid groups." Annales mathématiques Blaise Pascal 18.1 (2011): 15-59. <http://eudml.org/doc/219712>.

@article{González2011,
abstract = {These are Lecture Notes of a course given by the author at the French-Spanish School Tresses in Pau, held in Pau (France) in October 2009. It is basically an introduction to distinct approaches and techniques that can be used to show results in braid groups. Using these techniques we provide several proofs of well known results in braid groups, namely the correctness of Artin’s presentation, that the braid group is torsion free, or that its center is generated by the full twist. We also recall some solutions of the word and conjugacy problems, and that roots of a braid are always conjugate. We also describe the centralizer of a given braid. Most proofs are classical ones, using modern terminology. I have chosen those which I find simpler or more beautiful.},
affiliation = {Departamento de Álgebra Facultad de Matemáticas Universidad de Sevilla Apdo. 1160 41080 - Sevilla SPAIN},
author = {González-Meneses, Juan},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Braids; torsion-free; presentation; Garside; Nielsen-Thurston theory; braid groups; torsion freeness; Dehornoy theorem; orderability; Artin presentations; word problem; conjugacy problem; linearity; centralizers; roots},
language = {eng},
month = {1},
number = {1},
pages = {15-59},
publisher = {Annales mathématiques Blaise Pascal},
title = {Basic results on braid groups},
url = {http://eudml.org/doc/219712},
volume = {18},
year = {2011},
}

TY - JOUR
AU - González-Meneses, Juan
TI - Basic results on braid groups
JO - Annales mathématiques Blaise Pascal
DA - 2011/1//
PB - Annales mathématiques Blaise Pascal
VL - 18
IS - 1
SP - 15
EP - 59
AB - These are Lecture Notes of a course given by the author at the French-Spanish School Tresses in Pau, held in Pau (France) in October 2009. It is basically an introduction to distinct approaches and techniques that can be used to show results in braid groups. Using these techniques we provide several proofs of well known results in braid groups, namely the correctness of Artin’s presentation, that the braid group is torsion free, or that its center is generated by the full twist. We also recall some solutions of the word and conjugacy problems, and that roots of a braid are always conjugate. We also describe the centralizer of a given braid. Most proofs are classical ones, using modern terminology. I have chosen those which I find simpler or more beautiful.
LA - eng
KW - Braids; torsion-free; presentation; Garside; Nielsen-Thurston theory; braid groups; torsion freeness; Dehornoy theorem; orderability; Artin presentations; word problem; conjugacy problem; linearity; centralizers; roots
UR - http://eudml.org/doc/219712
ER -

References

top
  1. J. W. Alexander, On the Deformation of an n-Cell, Proc. of the Nat. Acad. of Sci. of the USA. 9 (12) (1923), 406-407 
  2. E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Hamburgischen Univ. 4 (1925), 47-72 
  3. E. Artin, The theory of braids, Annals of Math. 48 (1947), 101-126 Zbl0030.17703MR19087
  4. L. Bacardit, W. Dicks, Actions of the braid group, and new algebraic proofs of results of Dehornoy and Larue, Groups - Complexity - Criptology 1 (2009), 77-129 Zbl1195.20041MR2502938
  5. G. Baumslag, Automorphisms groups of residually finite groups, J. London Math. Soc. 38 (1963), 117-118 Zbl0124.26003MR146271
  6. D. Bessis, Garside categories, periodic loops and cyclic sets, (2006) 
  7. D. Bessis, F. Digne, J. Michel, Springer theory in braid groups and the Birman-Ko-Lee monoid, Pacific J. Math. 205 (2) (2002), 287-309 Zbl1056.20023MR1922736
  8. S. J. Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2) (2001), 471-486 Zbl0988.20021MR1815219
  9. J. S. Birman, braids, links and mapping class groups. Annals of Mathematics Studies, No. 82., (1974), Princeton University Press, Princeton, N.J. Zbl0305.57013MR375281
  10. J. S. Birman, V. Gebhardt, J. González-Meneses, Conjugacy in Garside groups. I. Cyclings, powers and rigidity, Groups Geom. Dyn. 1 (3) (2007), 221-279 Zbl1160.20026MR2314045
  11. J. S. Birman, V. Gebhardt, J. González-Meneses, Conjugacy in Garside groups. III. Periodic braids, J. Algebra 316 (2) (2007), 746-776 Zbl1165.20031MR2358613
  12. J. S. Birman, K.-H. Ko, S. J. Lee, A new approach to the word and conjugacy problems in the braid groups, Adv. Math. 139 (2) (1998), 322-353 Zbl0937.20016MR1654165
  13. J. S. Birman, A. Lubotzky, J. McCarthy, Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (4) (1983), 1107-1120 Zbl0551.57004MR726319
  14. F. Bohnenblust, The algebraical braid group, Ann. of Math. (2) 48 (1947), 127-136 Zbl0030.17801MR19088
  15. Wieb Bosma, John Cannon, Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265 Zbl0898.68039MR1484478
  16. E. Brieskorn, K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245-271 Zbl0243.20037MR323910
  17. J. C. Cha, C. Livingstone, M. Durbin, Braid group calculator 
  18. R. Charney, Artin groups of finite type are biautomatic, Math. Ann. 292 (4) (1992), 671-683 Zbl0736.57001MR1157320
  19. W.-L. Chow, On the algebraical braid group, Ann. of Math. (2) 49 (1948), 654-658 Zbl0033.01002MR26050
  20. A. M. Cohen, D. B. Wales, Linearity of Artin groups of finite type, Israel J. Math. 131 (2002), 101-123 Zbl1078.20038MR1942303
  21. A. Constantin, B. Kolev, The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere, L’Enseign. Math. 40 (1994), 193-204 Zbl0852.57012MR1309126
  22. P. Dehornoy, Braid groups and left distributive operations, Trans. Amer. Math. Soc. 345 (1) (1994), 115-150 Zbl0837.20048MR1214782
  23. P. Dehornoy, Left-Garside categories, self-distributivity, and braids, Ann. Math. Blaise Pascal 16 (2009), 189-244 Zbl1183.18004MR2568862
  24. P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Why are braids orderable?, (2002), Panoramas et Synthèses 14. Société Mathématique de France, Paris Zbl1048.20021MR1988550
  25. P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Ordering braids, (2008), Mathematical Surveys and Monographs, 148. American Mathematical Society, Providence, RI Zbl1163.20024MR2463428
  26. P. Dehornoy, L. Paris, Gaussian groups and Garside groups, two generalisations of Artin groups., Proc. London Math. Soc. (3) 79 (3) (1999), 569-604 Zbl1030.20021MR1710165
  27. F. Digne, On the linearity of Artin braid groups, J. Algebra 268 (1) (2003), 39-57 Zbl1066.20044MR2004479
  28. F. Digne, J. Michel, Garside and locally Garside categories, (2006) Zbl1294.18003
  29. S. Eilenberg, Sur les transformations périodiques de la surface de la sphère, Fund. Math. 22 (1934), 28-44 Zbl0008.37109
  30. E. A. El-Rifai, H. R. Morton, Algorithms for positive braids, Quart. J. Math. Oxford Ser. (2) 45 (180) (1994), 479-497 Zbl0839.20051MR1315459
  31. D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, W. P. Thurston, Word processing in groups, (1992), Jones and Bartlett Publishers, Boston, MA Zbl0764.20017MR1161694
  32. E. Fadell, L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118 Zbl0136.44104MR141126
  33. E. Fadell, J. Van Buskirk, The braid groups of E 2 and S 2 , Duke Math. J. 29 (1962), 243-257 Zbl0122.17804MR141128
  34. R. Fenn, M. T. Greene, D. Rolfsen, C. Rourke, B. Wiest, Ordering the braid groups, Pacific J. of Math. 191 (1) (1999), 49-74 Zbl1009.20042MR1725462
  35. R. Fox, L. Neuwirth, The braid groups, Math. Scand. 10 (1962), 119-126 Zbl0117.41101MR150755
  36. N. Franco, J. González-Meneses, Conjugacy problem for braid groups and Garside groups, J. Algebra 266 (1) (2003), 112-132 Zbl1043.20019MR1994532
  37. F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235-254 Zbl0194.03303MR248801
  38. V. Gebhardt, A new approach to the conjugacy problem in Garside groups, J. Algebra 292 (1) (2005), 282-302 Zbl1105.20032MR2166805
  39. Volker Gebhardt, Juan González-Meneses, The cyclic sliding operation in Garside groups, Math. Z. 265 (2010), 85-114 Zbl1253.20034MR2606950
  40. Volker Gebhardt, Juan González-Meneses, Solving the conjugacy problem in Garside groups by cyclic sliding, Journal of Symbolic Computation 45 (2010), 629-656 Zbl1235.20032MR2639308
  41. M. Geck, G. Hiß, F. Lübeck, G. Malle, J. Michel, G. Pfeiffer, CHEVIE: computer algebra package for GAP3. Zbl0847.20006
  42. J. González-Meneses, Personal web page 
  43. J. González-Meneses, The n-th root of a braid is unique up to conjugacy, Alg. and Geom. Topology 3 (2003), 1103-1118 Zbl1063.20041MR2012967
  44. J. González-Meneses, On reduction curves and Garside properties of braids, Contemporary Mathematics 538 (2011), 227-244 Zbl1255.20035
  45. J. González-Meneses, B. Wiest, On the structure of the centralizer of a braid, Ann. Sci. École Norm. Sup. (4) 37 (5) (2004), 729-757 Zbl1082.20024MR2103472
  46. M. Hall, Subgroups of finite index in free groups, Canadian J. of Math. 1 (1949), 187-190 Zbl0031.34001MR28836
  47. Jean-Yves Hée, Une démonstration simple de la fidélité de la représentation de Lawrence-Krammer-Paris, J. Algebra 321 (2009), 1039-1048 Zbl1163.20025MR2488566
  48. A. Hurwitz, Über Riemannsche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1) (1891), 1-60 MR1510692
  49. N. V. Ivanov, Subgroups of Teichmüller modular groups, (1992), Translations of Mathematical Monographs, 115. American Mathematical Society, Providence, RI Zbl0776.57001MR1195787
  50. C Kassel, V. Turaev, Braid groups, (2008), Graduate Texts in Mathematics, 247. Springer, New York Zbl1208.20041MR2435235
  51. B. von Kerékjártó, Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche, Math. Ann. 80 (1919-1920), 36-38 Zbl47.0526.05MR1511945
  52. D. Krammer, The braid group B 4 is linear, Invent. Math. 142 (3) (2000), 451-486 Zbl0988.20023MR1804157
  53. D. Krammer, Braid groups are linear, Ann. of Math. (2) 155 (1) (2002), 131-156 Zbl1020.20025MR1888796
  54. D. Krammer, A class of Garside groupoid structures on the pure braid group, (2005) Zbl1194.20040
  55. E.-K. Lee, S. J. Lee, A Garside-theoretic approach to the reducibility problem in braid groups, J. Algebra 320 (2) (2008), 783-820 Zbl1191.20034MR2422316
  56. F. Levi, Über die Untergruppen der freien gruppen II, Math. Z. 37 (1933), 90-97 Zbl59.0142.03MR1545385
  57. W. Magnus, Über Automorphismen von Fundamentalgruppen berandeter Flächen., Math. Ann. 109 (1934), 617-646 Zbl60.0091.01MR1512913
  58. W. Magnus, Residually finite groups, Bull. Amer. Math. Soc. 75 (1969), 305-316 Zbl0196.04704MR241525
  59. W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory, (1966), Interscience Publishers (John Wiley & Sons, Inc.), New York-London-Sydney Zbl0138.25604MR207802
  60. A. I. Mal’cev, On isomorphic matrix representations of infinite groups, Mat. Sb. 182 (1940), 142-149 
  61. I. Marin, On the residual nilpotence of pure Artin groups, J. Group Theory 9 (4) (2006), 483-485 Zbl1103.20035MR2243240
  62. A. Markoff, Foundations of the algebraic theory of tresses. (Russian), Trav. Inst. Math. Stekloff 16 (1945) Zbl0061.02507MR17279
  63. J. D. McCarthy, Normalizers and Centralizers of pseudo-Anosov mapping classes, (1982) 
  64. J. Nielsen, Abbildungsklassen endlicher Ordnung, Acta Math. 75 (1943), 23-115 Zbl0027.26601MR13306
  65. O. Ore, Linear equations in non-commutative fields, Ann. of Math. (2) 32 (3) (1931), 463-477 Zbl0001.26601MR1503010
  66. P. Orlik, H. Terao, Arrangements of hyperplanes., (1992), Grundlehren der Mathematischen Wissenschaften, 300. Springer-Verlag, Berlin Zbl0757.55001MR1217488
  67. L. Paris, Artin monoids inject in their groups, Commen. Math. Helv. 77 (3) (2002), 609-637 Zbl1020.20026MR1933791
  68. L. Paris, Braid groups and Artin groups, Handbook of Teichmüller theory. Vol. II (2009), 389-451, Papadopoulos.A.A. Zbl1230.20040MR2497781
  69. W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (2) (1988), 417-431 Zbl0674.57008MR956596
  70. O. Zariski, On the Poincaré group of rational plane curves, Amer. J. of Math. 58 (3) (1936), 607-619 Zbl0014.32801MR1507185

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.