Vortex motion and phase-vortex interaction in dissipative Ginzburg-Landau dynamics
F. Bethuel[1]; G. Orlandi[2]; D. Smets[3]
- [1] Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4 place Jussieu BC 187, 75252 Paris, France & Institut Universitaire de France.
- [2] Dipartimento di Informatica, Università di Verona, Strada le Grazie, 37134 Verona, Italy.
- [3] Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4 place Jussieu BC 187, 75252 Paris, France.
Journées Équations aux dérivées partielles (2004)
- page 1-12
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topBethuel, F., Orlandi, G., and Smets, D.. "Vortex motion and phase-vortex interaction in dissipative Ginzburg-Landau dynamics." Journées Équations aux dérivées partielles (2004): 1-12. <http://eudml.org/doc/10589>.
@article{Bethuel2004,
abstract = {We discuss the asymptotics of the parabolic Ginzburg-Landau equation in dimension $N\ge 2.$ Our only asumption on the initial datum is a natural energy bound. Compared to the case of “well-prepared” initial datum, this induces possible new energy modes which we analyze, and in particular their mutual interaction. The two dimensional case is qualitatively different and requires a separate treatment.},
affiliation = {Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4 place Jussieu BC 187, 75252 Paris, France & Institut Universitaire de France.; Dipartimento di Informatica, Università di Verona, Strada le Grazie, 37134 Verona, Italy.; Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4 place Jussieu BC 187, 75252 Paris, France.},
author = {Bethuel, F., Orlandi, G., Smets, D.},
journal = {Journées Équations aux dérivées partielles},
keywords = {new energy modes},
language = {eng},
month = {6},
pages = {1-12},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Vortex motion and phase-vortex interaction in dissipative Ginzburg-Landau dynamics},
url = {http://eudml.org/doc/10589},
year = {2004},
}
TY - JOUR
AU - Bethuel, F.
AU - Orlandi, G.
AU - Smets, D.
TI - Vortex motion and phase-vortex interaction in dissipative Ginzburg-Landau dynamics
JO - Journées Équations aux dérivées partielles
DA - 2004/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 12
AB - We discuss the asymptotics of the parabolic Ginzburg-Landau equation in dimension $N\ge 2.$ Our only asumption on the initial datum is a natural energy bound. Compared to the case of “well-prepared” initial datum, this induces possible new energy modes which we analyze, and in particular their mutual interaction. The two dimensional case is qualitatively different and requires a separate treatment.
LA - eng
KW - new energy modes
UR - http://eudml.org/doc/10589
ER -
References
top- G. Alberti, S. Baldo and G. Orlandi, Variational convergence for functionals of Ginzburg-Landau type, Indiana Math. Journal, submitted. Zbl1160.35013
- L. Ambrosio and M. Soner, A measure theoretic approach to higher codimension mean curvature flow, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. 25 (1997), 27-49. Zbl1043.35136MR1655508
- P. Baumann, C-N. Chen, D. Phillips, P. Sternberg, Vortex annihilation in nonlinear heat flow for Ginzburg-Landau systems, Eur. J. Appl. Math. 6 (1995), 115–126. Zbl0845.35042MR1331494
- F. Bethuel, G. Orlandi and D. Smets, Vortex rings for the Gross-Pitaevskii equation, Jour. Eur. Math. Soc. 6 (2004), 17-94. Zbl1091.35085MR2041006
- F. Bethuel, G. Orlandi and D. Smets, Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature, Annals of Math., to appear. Zbl1103.35038MR1988309
- F. Bethuel, G. Orlandi and D. Smets, Collisions and phase-vortex interactions in dissipative Ginzburg-Landau dynamics, preprint. Zbl1087.35008
- K. Brakke, The motion of a surface by its mean curvature, Princeton University Press, 1978. Zbl0386.53047MR485012
- L. Bronsard and R.V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics, J. Differential Equations 90 (1991), 211-237. Zbl0735.35072MR1101239
- W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, Phys. D 77 (1994), no. 4, 383-404. Zbl0814.34039MR1297726
- G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984), 237-266. Zbl0556.53001MR772132
- G. Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1990), 285-299. Zbl0694.53005MR1030675
- T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Differential Geom. 38 (1993), 417-461. Zbl0784.53035MR1237490
- T. Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc. 108 (1994), no. 520. Zbl0798.35066MR1196160
- R.L. Jerrard and H.M. Soner, Dynamics of Ginzburg-Landau vortices, Arch. Rational Mech. Anal. 142 (1998), 99-125. Zbl0923.35167MR1629646
- R.L. Jerrard and H.M. Soner, Scaling limits and regularity results for a class of Ginzburg-Landau systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999), 423-466. Zbl0944.35006MR1697561
- R.L. Jerrard and H.M. Soner, The Jacobian and the Ginzburg-Landau energy, Calc. Var. PDE 14 (2002), 151-191. Zbl1034.35025MR1890398
- F.H. Lin, Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math. 49 (1996), 323–359. Zbl0853.35058MR1376654
- F.H. Lin, Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension- submanifolds, Comm. Pure Appl. Math. 51 (1998), 385-441. Zbl0932.35121MR1491752
- J.C. Neu, Vortices in complex scalar fields, Phys. D 43 (1990), no.2-3, 385-406. Zbl0711.35024MR1067918
- L.M. Pismen and J. Rubinstein, Motion of vortex lines in the Ginzburg-Landau model, Phys. D 47 (1991), 353-360. Zbl0728.35090MR1098255
- J. Rubinstein and P. Sternberg, On the slow motion of vortices in the Ginzburg-Landau heat-flow, SIAM J. Appl. Math. 26 (1995), 1452-1466. Zbl0838.35102MR1356453
- E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure App. Math., to appear. Zbl1065.49011MR2082242
- S. Serfaty, Vortex Collision and Energy Dissipation Rates in the Ginzburg-Landau Heat Flow, in preparation. Zbl1137.35005
- H.M. Soner, Ginzburg-Landau equation and motion by mean curvature. I. Convergence, and II. Development of the initial interface, J. Geom. Anal. 7 (1997), no. 3, 437-475 and 477-491. Zbl0935.35060MR1674799
- D. Spirn, Vortex dynamics of the full time-dependent Ginzburg-Landau equations, Comm. Pure Appl. Math. 55 (2002), no. 5, 537-581. Zbl1032.35163MR1880643
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.