Vortex motion and phase-vortex interaction in dissipative Ginzburg-Landau dynamics

F. Bethuel[1]; G. Orlandi[2]; D. Smets[3]

  • [1] Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4 place Jussieu BC 187, 75252 Paris, France & Institut Universitaire de France.
  • [2] Dipartimento di Informatica, Università di Verona, Strada le Grazie, 37134 Verona, Italy.
  • [3] Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4 place Jussieu BC 187, 75252 Paris, France.

Journées Équations aux dérivées partielles (2004)

  • page 1-12
  • ISSN: 0752-0360

Abstract

top
We discuss the asymptotics of the parabolic Ginzburg-Landau equation in dimension N 2 . Our only asumption on the initial datum is a natural energy bound. Compared to the case of “well-prepared” initial datum, this induces possible new energy modes which we analyze, and in particular their mutual interaction. The two dimensional case is qualitatively different and requires a separate treatment.

How to cite

top

Bethuel, F., Orlandi, G., and Smets, D.. "Vortex motion and phase-vortex interaction in dissipative Ginzburg-Landau dynamics." Journées Équations aux dérivées partielles (2004): 1-12. <http://eudml.org/doc/10589>.

@article{Bethuel2004,
abstract = {We discuss the asymptotics of the parabolic Ginzburg-Landau equation in dimension $N\ge 2.$ Our only asumption on the initial datum is a natural energy bound. Compared to the case of “well-prepared” initial datum, this induces possible new energy modes which we analyze, and in particular their mutual interaction. The two dimensional case is qualitatively different and requires a separate treatment.},
affiliation = {Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4 place Jussieu BC 187, 75252 Paris, France & Institut Universitaire de France.; Dipartimento di Informatica, Università di Verona, Strada le Grazie, 37134 Verona, Italy.; Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4 place Jussieu BC 187, 75252 Paris, France.},
author = {Bethuel, F., Orlandi, G., Smets, D.},
journal = {Journées Équations aux dérivées partielles},
keywords = {new energy modes},
language = {eng},
month = {6},
pages = {1-12},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Vortex motion and phase-vortex interaction in dissipative Ginzburg-Landau dynamics},
url = {http://eudml.org/doc/10589},
year = {2004},
}

TY - JOUR
AU - Bethuel, F.
AU - Orlandi, G.
AU - Smets, D.
TI - Vortex motion and phase-vortex interaction in dissipative Ginzburg-Landau dynamics
JO - Journées Équations aux dérivées partielles
DA - 2004/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 12
AB - We discuss the asymptotics of the parabolic Ginzburg-Landau equation in dimension $N\ge 2.$ Our only asumption on the initial datum is a natural energy bound. Compared to the case of “well-prepared” initial datum, this induces possible new energy modes which we analyze, and in particular their mutual interaction. The two dimensional case is qualitatively different and requires a separate treatment.
LA - eng
KW - new energy modes
UR - http://eudml.org/doc/10589
ER -

References

top
  1. G. Alberti, S. Baldo and G. Orlandi, Variational convergence for functionals of Ginzburg-Landau type, Indiana Math. Journal, submitted. Zbl1160.35013
  2. L. Ambrosio and M. Soner, A measure theoretic approach to higher codimension mean curvature flow, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. 25 (1997), 27-49. Zbl1043.35136MR1655508
  3. P. Baumann, C-N. Chen, D. Phillips, P. Sternberg, Vortex annihilation in nonlinear heat flow for Ginzburg-Landau systems, Eur. J. Appl. Math. 6 (1995), 115–126. Zbl0845.35042MR1331494
  4. F. Bethuel, G. Orlandi and D. Smets, Vortex rings for the Gross-Pitaevskii equation, Jour. Eur. Math. Soc. 6 (2004), 17-94. Zbl1091.35085MR2041006
  5. F. Bethuel, G. Orlandi and D. Smets, Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature, Annals of Math., to appear. Zbl1103.35038MR1988309
  6. F. Bethuel, G. Orlandi and D. Smets, Collisions and phase-vortex interactions in dissipative Ginzburg-Landau dynamics, preprint. Zbl1087.35008
  7. K. Brakke, The motion of a surface by its mean curvature, Princeton University Press, 1978. Zbl0386.53047MR485012
  8. L. Bronsard and R.V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics, J. Differential Equations 90 (1991), 211-237. Zbl0735.35072MR1101239
  9. W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, Phys. D 77 (1994), no. 4, 383-404. Zbl0814.34039MR1297726
  10. G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984), 237-266. Zbl0556.53001MR772132
  11. G. Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1990), 285-299. Zbl0694.53005MR1030675
  12. T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Differential Geom. 38 (1993), 417-461. Zbl0784.53035MR1237490
  13. T. Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc. 108 (1994), no. 520. Zbl0798.35066MR1196160
  14. R.L. Jerrard and H.M. Soner, Dynamics of Ginzburg-Landau vortices, Arch. Rational Mech. Anal. 142 (1998), 99-125. Zbl0923.35167MR1629646
  15. R.L. Jerrard and H.M. Soner, Scaling limits and regularity results for a class of Ginzburg-Landau systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999), 423-466. Zbl0944.35006MR1697561
  16. R.L. Jerrard and H.M. Soner, The Jacobian and the Ginzburg-Landau energy, Calc. Var. PDE 14 (2002), 151-191. Zbl1034.35025MR1890398
  17. F.H. Lin, Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math. 49 (1996), 323–359. Zbl0853.35058MR1376654
  18. F.H. Lin, Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension- 2 submanifolds, Comm. Pure Appl. Math. 51 (1998), 385-441. Zbl0932.35121MR1491752
  19. J.C. Neu, Vortices in complex scalar fields, Phys. D 43 (1990), no.2-3, 385-406. Zbl0711.35024MR1067918
  20. L.M. Pismen and J. Rubinstein, Motion of vortex lines in the Ginzburg-Landau model, Phys. D 47 (1991), 353-360. Zbl0728.35090MR1098255
  21. J. Rubinstein and P. Sternberg, On the slow motion of vortices in the Ginzburg-Landau heat-flow, SIAM J. Appl. Math. 26 (1995), 1452-1466. Zbl0838.35102MR1356453
  22. E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure App. Math., to appear. Zbl1065.49011MR2082242
  23. S. Serfaty, Vortex Collision and Energy Dissipation Rates in the Ginzburg-Landau Heat Flow, in preparation. Zbl1137.35005
  24. H.M. Soner, Ginzburg-Landau equation and motion by mean curvature. I. Convergence, and II. Development of the initial interface, J. Geom. Anal. 7 (1997), no. 3, 437-475 and 477-491. Zbl0935.35060MR1674799
  25. D. Spirn, Vortex dynamics of the full time-dependent Ginzburg-Landau equations, Comm. Pure Appl. Math. 55 (2002), no. 5, 537-581. Zbl1032.35163MR1880643

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.