Scaling limits and regularity results for a class of Ginzburg-Landau systems

Robert L. Jerrard; Halil Mete Soner

Annales de l'I.H.P. Analyse non linéaire (1999)

  • Volume: 16, Issue: 4, page 423-466
  • ISSN: 0294-1449

How to cite

top

Jerrard, Robert L., and Soner, Halil Mete. "Scaling limits and regularity results for a class of Ginzburg-Landau systems." Annales de l'I.H.P. Analyse non linéaire 16.4 (1999): 423-466. <http://eudml.org/doc/78471>.

@article{Jerrard1999,
author = {Jerrard, Robert L., Soner, Halil Mete},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {-regularity theorems; mean curvature flow; partial regularity theorems uniform in },
language = {eng},
number = {4},
pages = {423-466},
publisher = {Gauthier-Villars},
title = {Scaling limits and regularity results for a class of Ginzburg-Landau systems},
url = {http://eudml.org/doc/78471},
volume = {16},
year = {1999},
}

TY - JOUR
AU - Jerrard, Robert L.
AU - Soner, Halil Mete
TI - Scaling limits and regularity results for a class of Ginzburg-Landau systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 4
SP - 423
EP - 466
LA - eng
KW - -regularity theorems; mean curvature flow; partial regularity theorems uniform in
UR - http://eudml.org/doc/78471
ER -

References

top
  1. [1] L. Ambrosio and H.M. Soner, Level set approach to mean curvature flow in arbitrary codimension. J. Diff. Geom., Vol. 43, 1996, pp. 693-737. Zbl0868.35046MR1412682
  2. [2] G. Barles, H.M. Soner, and P.E. Souganidis, Front propagation and phase field theory. SIAM J. Cont. Opt., Vol. 31 (2), 1993, pp. 439-469. Zbl0785.35049MR1205984
  3. [3] P. Bauman, C.N. Chen, D. Phillips, and P. Sternberg, Vortex annihilation in nonlinear heat flow for Ginzburg-Landau systems. European J. Appl. Math., Vol. 6(2), 1995, pp. 115-126. Zbl0845.35042MR1331494
  4. [4] F. Bethuel, H. Brezis, and F HÉLEIN, Asymptotics for the minimization of a Ginzburg-Landau functional. Calc. Var., Vol. 1, 1993, pp. 123-148. Zbl0834.35014MR1261720
  5. [5] F. Bethuel, H. Brezis, F. Hélein,Ginzburg-Landau Vortices, Birkhäuser, Boston, 1994. Zbl0802.35142MR1269538
  6. [6] H. Brezis, F. Merle, and T. Riviere, Quantization effects for -Δu = u(1 - |u|2) in R2. Archive Rat. Mech. Anal., Vol. 126, 1994, pp. 35-58. Zbl0809.35019MR1268048
  7. [7] X. Chen, Generation and propagation of the interface for reaction-diffusion equations. Jour. Diff. Equations, Vol. 96, 1992, pp. 116-141. Zbl0765.35024MR1153311
  8. [8] Y. Chen and M. Struwe, Existence and partial regularity results for the heat flow for harmonic maps. Math Z., Vol. 201, 1989, pp. 83-103. Zbl0652.58024MR990191
  9. [9] W.E., Dynamicsof vortices in Ginzburg-Landau theories with applications to superconductivity. Physica D, Vol. 77, 1994, pp. 383-404. Zbl0814.34039MR1297726
  10. [10] L.C. Evans, H.M. Soner, and P.E. Souganidis, Phase transitions and generalized motion by curvature. Comm. Pure Appl. Math., Vol. 65, 1992, pp. 1097-1123. Zbl0801.35045MR1177477
  11. [11] T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature. J. Diff. Geom., Vol. 38 (2), 1993, pp. 417-461. Zbl0784.53035MR1237490
  12. [12] R.L. Jerrard, Fully nonlinear phase field equations and generalized mean curvature motion. Comm PDE, Vol. 20, 1995, pp. 233-265. Zbl0860.35063MR1312705
  13. [13] R.L. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals, center for Nonlinear Analysis Research Report No. 95-NA-020, 1995. 
  14. [14] R.L. Jerrard and H.M. Soner, Dynamics of Ginzburg-Landau vortices, Arch. Rat. Mech. Anal., Vol. 142, 1998, pp. 99-125. Zbl0923.35167MR1629646
  15. [15] N.V. Krylov and M.V. Safonov, A certain property of solutions of parabolic equations with measurable coefficients. Math. USSR Izvestia, Vol. 16 (1), 1981, pp. 151-164. Zbl0464.35035
  16. [16] O.A. Ladyzhenskya, V.A. Solonnikov, and N.N. Uraltseva. Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968. 
  17. [17] F.H. Lin, Solutions of Ginzburg-Landau equations and critical points of the renormalized energy. Ann. Inst. H. Poincaré Anal. Non Linéaire, Vol. 12 (5), 1995, pp. 599-622. Zbl0845.35052MR1353261
  18. [18] F.H. Lin, Some dynamical properties of Ginzburg-Landau vortices. Comm. Pure Appl. Math., Vol. 49 (4), 1996, pp. 323-359. Zbl0853.35058MR1376654
  19. [19] J.C. Neu, Vortices in complex scalar fields. Physica D, Vol. 43, 1990, pp. 385-406. Zbl0711.35024MR1067918
  20. [20] L.M. Pismen and J. Rubinstein, Motion of vortex lines in the Ginzburg-Landau model. Physica D, Vol. 47, 1991, pp. 353-360. Zbl0728.35090MR1098255
  21. [21] J. Rubinstein, Self-induced motion of line vortices. Quart. Appl. Math., Vol. 49 (1), 1991, pp. 1-9. Zbl0728.35118MR1096227
  22. [22] R. Schoen, Analytic aspects of the harmonic map problem, In S.S. Chern, editor, Seminar on Nonlinear Partial Differential Equations. Springer, Berlin, 1984. Zbl0551.58011MR765241
  23. [23] H. Mete Soner, Motion of a set by the curvature of its boundary. Jour. Diff. Equations, Vol. 101 (2), 1993, pp. 313-372. Zbl0769.35070MR1204331
  24. [24] M. Struwe, On the evolution of harmonic maps in higher dimensions. J. Diff. Geom., Vol. 28, 1988, pp. 485-502. Zbl0631.58004MR965226
  25. [25] M. Struwe. Variational Methods, Springer-Verlag, Berlin, 1990. Zbl0746.49010MR1078018
  26. [26] M. Struwe, On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions. Diff. and Int. Equations, Vol. 7 (6), 1994, pp. 1613-1624. Zbl0809.35031MR1269674
  27. [27] Y. Kuramoto, Chemical Waves, Oscillations, and Turbulence, Springer-Verlag, Berlin, 1984. Zbl0558.76051

Citations in EuDML Documents

top
  1. Robert L. Jerrard, Vortex filament dynamics for Gross-Pitaevsky type equations
  2. F. Bethuel, G. Orlandi, D. Smets, Vortex motion and phase-vortex interaction in dissipative Ginzburg-Landau dynamics
  3. Luigi Ambrosio, Halil Mete Soner, A measure theoretic approach to higher codimension mean curvature flows
  4. F. Bethuel, G. Orlandi, Uniform estimates for the parabolic Ginzburg–Landau equation
  5. Fang Hua Lin, Chang You Wang, Harmonic and quasi-harmonic spheres, part III. Rectifiablity of the parabolic defect measure and generalized varifold flows
  6. Fabrice Bethuel, Giandomenico Orlandi, Didier Smets, Motion of concentration sets in Ginzburg-Landau equations
  7. F. Bethuel, G. Orlandi, Uniform estimates for the parabolic Ginzburg–Landau equation

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.