Geometric renormalization of large energy wave maps

Terence Tao[1]

  • [1] Department of Mathematics, UCLA, Los Angeles CA 90095-1555

Journées Équations aux dérivées partielles (2004)

  • page 1-32
  • ISSN: 0752-0360

Abstract

top
There has been much progress in recent years in understanding the existence problem for wave maps with small critical Sobolev norm (in particular for two-dimensional wave maps with small energy); a key aspect in that theory has been a renormalization procedure (either a geometric Coulomb gauge, or a microlocal gauge) which converts the nonlinear term into one closer to that of a semilinear wave equation. However, both of these renormalization procedures encounter difficulty if the energy of the solution is large. In this report we present a different renormalization, based on the harmonic map heat flow, which works for large energy wave maps from two dimensions to hyperbolic spaces. We also observe an intriguing estimate of “non-concentration” type, which asserts roughly speaking that if the energy of a wave map concentrates at a point, then it becomes asymptotically self-similar.

How to cite

top

Tao, Terence. "Geometric renormalization of large energy wave maps." Journées Équations aux dérivées partielles (2004): 1-32. <http://eudml.org/doc/10590>.

@article{Tao2004,
abstract = {There has been much progress in recent years in understanding the existence problem for wave maps with small critical Sobolev norm (in particular for two-dimensional wave maps with small energy); a key aspect in that theory has been a renormalization procedure (either a geometric Coulomb gauge, or a microlocal gauge) which converts the nonlinear term into one closer to that of a semilinear wave equation. However, both of these renormalization procedures encounter difficulty if the energy of the solution is large. In this report we present a different renormalization, based on the harmonic map heat flow, which works for large energy wave maps from two dimensions to hyperbolic spaces. We also observe an intriguing estimate of “non-concentration” type, which asserts roughly speaking that if the energy of a wave map concentrates at a point, then it becomes asymptotically self-similar.},
affiliation = {Department of Mathematics, UCLA, Los Angeles CA 90095-1555},
author = {Tao, Terence},
journal = {Journées Équations aux dérivées partielles},
keywords = {wave maps; harmonic maps; renormalization; Coulomb gauge; Minkowski space},
language = {eng},
month = {6},
pages = {1-32},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Geometric renormalization of large energy wave maps},
url = {http://eudml.org/doc/10590},
year = {2004},
}

TY - JOUR
AU - Tao, Terence
TI - Geometric renormalization of large energy wave maps
JO - Journées Équations aux dérivées partielles
DA - 2004/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 32
AB - There has been much progress in recent years in understanding the existence problem for wave maps with small critical Sobolev norm (in particular for two-dimensional wave maps with small energy); a key aspect in that theory has been a renormalization procedure (either a geometric Coulomb gauge, or a microlocal gauge) which converts the nonlinear term into one closer to that of a semilinear wave equation. However, both of these renormalization procedures encounter difficulty if the energy of the solution is large. In this report we present a different renormalization, based on the harmonic map heat flow, which works for large energy wave maps from two dimensions to hyperbolic spaces. We also observe an intriguing estimate of “non-concentration” type, which asserts roughly speaking that if the energy of a wave map concentrates at a point, then it becomes asymptotically self-similar.
LA - eng
KW - wave maps; harmonic maps; renormalization; Coulomb gauge; Minkowski space
UR - http://eudml.org/doc/10590
ER -

References

top
  1. B.K. Berger, P. T. Chrusciel, V. Moncrief, On “asymptotically flat” spacetimes with G 2 invariant Cauchy surfaces, Ann. Physics 237 (1995), 322–354. Zbl0967.83507MR1314228
  2. P. Bizon, T. Chmaj, Z. Tabor, Formation of singularities for equivariant 2+1 dimensional wave maps into two-sphere, Nonlinearity 14 (2001), no. 5, 1041–1053. Zbl0988.35010MR1862811
  3. J. Bourgain, Global well-posedness of defocusing 3D critical NLS in the radial case, JAMS 12 (1999), 145-171. Zbl0958.35126MR1626257
  4. J. Bourgain, New global well-posedness results for non-linear Schrödinger equations, AMS Publications, 1999. 
  5. T. Cazenave, J. Shatah, A.S. Tahvildar-Zadeh, Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang-Mills fields, Ann. Inst. H. Poincaré Phys. Théor.68 (1998), 315-349. Zbl0918.58074MR1622539
  6. Y. Choquet-Bruhat, Global existence theorems for hyperbolic harmonic maps, Ann. Inst. H. Poincare Phys. Theor. 46 (1987), 97–111. Zbl0608.58018MR877997
  7. D. Christodoulou, A. Tahvildar-Zadeh, On the regularity of spherically symmetric wave maps, Comm. Pure Appl. Math, 46 (1993), 1041–1091. Zbl0744.58071MR1223662
  8. J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global well-posedness and scattering in the energy space for the critical nonlinear Schrödinger equation in 3 , preprint. Zbl1178.35345
  9. P. D’Ancona, V. Georgiev, On the continuity of the solution operator of the wave maps system, preprint. 
  10. J. Eells, H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. Zbl0122.40102MR164306
  11. A. Freire, S. Müller, M. Struwe, Weak compactness of wave maps and harmonic maps, Ann. Inst. H. Poincare Anal. Non Lineaire 15 (1998), no. 6, 725–754. Zbl0924.58011MR1650966
  12. J. Ginibre, G. Velo, The Cauchy problem for the O ( N ) , C P ( N - 1 ) , and G C ( N , P ) models, Ann. Physics, 142 (1982), 393–415. Zbl0512.58018MR678488
  13. L. Grafakos, R. Torres, Multilinear Calderón-Zygmund theory, Adv. Math. 165 (1992), 124–164. Zbl1032.42020MR1880324
  14. M. Grillakis, On nonlinear Schrödinger equations. , Comm. Partial Differential Equations 25 (2000), no. 9-10, 1827–1844. Zbl0970.35134MR1778782
  15. M. Grillakis, Classical solutions for the equivariant wave map in 1 + 2 dimensions, to appear in Indiana Univ. Math. J. 
  16. C. Gu, On the Cauchy problem for harmonic maps defined on two-dimensional Minkowski space, Comm. Pure Appl. Math., 33,(1980), 727–737. Zbl0475.58005MR596432
  17. F. Helein, Regularite des applications faiblement harmoniques entre une sur face et une varitee Riemannienne, C.R. Acad. Sci. Paris Ser. I Math., 312 (1991), 591-596. Zbl0728.35015MR1101039
  18. J. Isenberg, S. Liebling, Singularity formation in 2 + 1 wave maps, J. Math. Phys. 43 (2002), no. 1, 678–683. Zbl1052.58032MR1872523
  19. M. Keel, Global existence for critical power Yang-Mills-Higgs equations in 3 + 1 , Commun. in PDE 22 (1997), 1167–1227. Zbl0884.35134MR1466313
  20. M. Keel, T. Tao, Endpoint Strichartz Estimates, Amer. Math. J. 120 (1998), 955–980. Zbl0922.35028MR1646048
  21. M. Keel, T. Tao, Local and global well-posedness of wave maps on 1 + 1 for rough data, IMRN 21 (1998), 1117–1156. Zbl0999.58013MR1663216
  22. C. Kenig, E. Stein, Multilinear estimates and fractional interpolation, Math. Res. Lett. 6 (1999), 1–15 Zbl0952.42005MR1682725
  23. S. Klainerman, On the regularity of classical field theories in Minkowski space-time 3 + 1 , Prog. in Nonlin. Diff. Eq. and their Applic., 29, (1997), Birkhäuser, 113–150. Zbl0909.53051MR1437151
  24. S. Klainerman, PDE as a unified subject, preprint. 
  25. S. Klainerman, M. Machedon, Smoothing estimates for null forms and applications, Duke Math. J., 81 (1995), 99–133. Zbl0909.35094MR1381973
  26. S. Klainerman, M. Machedon, On the optimal local regularity for gauge field theories, Diff. and Integral Eq. 10 (1997), 1019–1030. Zbl0940.35011MR1608017
  27. S. Klainerman, I. Rodnianski, On the global regularity of wave maps in the critical Sobolev norm, IMRN 13 (2001), 656–677. Zbl0985.58009MR1843256
  28. S. Klainerman, I. Rodnianski, Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux, preprint. Zbl1206.35081MR2221255
  29. S. Klainerman, S. Selberg, Remark on the optimal regularity for equations of wave maps type, C.P.D.E., 22 (1997), 901–918. Zbl0884.35102MR1452172
  30. S. Klainerman, S. Selberg, Bilinear estimates and applications to nonlinear wave equations, preprint. Zbl1146.35389
  31. J. Krieger, Global regularity of wave maps from 3 + 1 to H 2 , CMP 238 (2003), 333–366. Zbl1046.58010MR1990880
  32. J. Krieger, Global regularity of wave maps from 2 + 1 to H 2 . Small energy, preprint. Zbl1099.58010
  33. O.A. Ladyzhenskaya, V.I. Shubov, Unique solvability of the Cauchy problem for the equations of the two dimensional chiral fields, taking values in complete Riemann manifolds, J. Soviet Math., 25 (1984), 855–864. (English Trans. of 1981 Article.) Zbl0531.58017
  34. P. Li, L. Tam, The heat equation and harmonic maps of complete manifolds, Invent. Math. 105 (1991), no. 1, 1–46. Zbl0748.58006MR1109619
  35. G. Liao, L. Tam, On the heat equation for harmonic maps from noncompact manifolds, Pacific J. Math. 153 (1992), no. 1, 129–145. Zbl0723.58017MR1145918
  36. S. Müller, M. Struwe, Global existence of wave maps in 1 + 2 dimensions with finite energy data, Topol. Methods Nonlinear Anal. 7 (1996), 245–259. Zbl0896.35086MR1481698
  37. C. Muscalu, T. Tao, C. Thiele, Multilinear operators given by singular multipliers, J. Amer. Math. Soc. 15 (2002), 469–496. Zbl0994.42015MR1887641
  38. A. Nahmod, A. Stefanov, K. Uhlenbeck, On the well-posedness of the wave map problem in high dimensions, Comm. Anal. Geom. 11 (2003), 49–83. Zbl1085.58022MR2016196
  39. K. Nakanishi, Local well-posedness and Illposedness in the critical Besov spaces for semilinear wave equations with quadratic forms, Funk. Ekvac. 42 (1999), 261-279. Zbl1141.35422MR1718767
  40. K. Nakanishi, Energy scattering for non-linear Klein-Gordon and Schrodinger equations in spatial dimensions 1 and 2, JFA 169 (1999), 201–225. Zbl0942.35159MR1726753
  41. D. Oberlin, E. Stein, Mapping properties of the Radon transform, Indiana U. Math. J. 31 (1982), 641–650. Zbl0548.44003MR667786
  42. K. Pohlmeyer, Integrable Hamiltonian systems and interaction through quadratic constraints, Comm. Math. Phys., 46 (1976), 207–221. Zbl0996.37504MR408535
  43. R. Schoen, Analytic aspects of the harmonic map problem, Math. Sci. Res. Inst. Publ. 2 (1984), Springer, Berlin, 321–358. Zbl0551.58011MR765241
  44. R. Schoen, S.T. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature, Comment. Math. Helv. 51 (1976), no. 3, 333–341. Zbl0361.53040MR438388
  45. S. Selberg, Multilinear space-time estimates and applications to local existence theory for non-linear wave equations, Princeton University Thesis. 
  46. J. Shatah, Weak solutions and development of singularities of the S U ( 2 ) σ -model. Comm. Pure Appl. Math., 41 (1988), 459–469. Zbl0686.35081MR933231
  47. J. Shatah, The Cauchy problem for harmonic maps on Minkowski space, in Proceed. Inter. Congress of Math. 1994, Birkhäuser, 1126–1132. Zbl0853.58104MR1404012
  48. J. Shatah, W. Strauss, Breathers as homoclinic geometric wave maps, Physics D 99 (1996), 113–133. Zbl0890.58009MR1439454
  49. J. Shatah, M. Struwe, Regularity results for non-linear wave equations, Ann. of Math. 138 (1993) 503–518. Zbl0836.35096MR1247991
  50. J. Shatah, M. Struwe, Geometric Wave Equations, Courant Lecture Notes in Mathematics 2 (1998) Zbl0993.35001MR1674843
  51. J. Shatah, M. Struwe, The Cauchy problem for wave maps, IMRN 11 (2002) 555–571. Zbl1024.58014MR1890048
  52. J. Shatah, A. Tavildar-Zadeh, Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds., Comm. Pure Appl. Math. 45 (1992), 947–971. Zbl0769.58015MR1168115
  53. J. Shatah, A. Tavildar-Zadeh, On the Cauchy problem for equivariant wave maps, Comm. Pure Appl. Math., 47 (1994), 719 – 753. Zbl0811.58059MR1278351
  54. J. Shatah, A. Tavildar-Zadeh, On the stability of stationary wave maps, Comm. Math. Phys., 185 (1996), 231 – 256. Zbl0877.58054MR1463041
  55. T. Sideris, Global existence of harmonic maps in Minkowski space, Comm. Pure Appl. Math., 42 (1989),1–13. Zbl0685.58016MR973742
  56. C. D. Sogge, Lectures on Nonlinear Wave Equations, Monographs in Analysis II, International Press, 1995. Zbl1089.35500MR1715192
  57. E. M. Stein, Harmonic Analysis, Princeton University Press, 1993. Zbl0821.42001MR1232192
  58. M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985), no. 4, 558–581. Zbl0595.58013MR826871
  59. M. Struwe, Wave Maps, in Nonlinear Partial Differential Equations in Geometry and Physics, Prog. in Nonlin. Diff. Eq. and their Applic., 29, (1997), Birkhäuser, 113–150. Zbl0869.53017MR1437153
  60. M. Struwe, Radially symmetric wave maps from the (1+2)-dimensional Minkowski space to a sphere, Math Z. 242 (2002), 407–414. Zbl1052.58034MR1985457
  61. M. Struwe, Radially symmetric wave maps from (1+2)-dimensional Minkowski space to general targets, Calc. Var. 16 (2003), 431–437. Zbl1039.58033MR1971037
  62. M. Struwe, Equivariant wave maps in two dimensions, preprint. Zbl1033.53019
  63. T. Tao, Ill-posedness for one-dimensional wave maps at the critical regularity, Amer. J. Math. 122 (2000), 451–463. Zbl0966.35135MR1759884
  64. T. Tao, Global regularity of wave maps I. Small critical Sobolev norm in high dimension, IMRN 7 (2001), 299-328. Zbl0983.35080MR1820329
  65. T. Tao, Global regularity of wave maps II. Small energy in two dimensions, submitted, Comm. Math. Phys. Zbl1020.35046MR1869874
  66. D. Tataru, Local and global results for wave maps I, Comm. PDE 23 (1998), 1781–1793. Zbl0914.35083MR1641721
  67. D. Tataru, On global existence and scattering for the wave maps equation, Amer. J. Math. 123 (2001), no. 1, 37–77. Zbl0979.35100MR1827277
  68. D. Tataru, Rough solutions for the wave maps equation, preprint. Zbl1330.58021
  69. D. Tataru, The wave maps equation, preprint. Zbl1065.35199MR2043751

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.