Canonical commutation relations and interacting Fock spaces

Zied Ammari[1]

  • [1] Université Cergy-Pontoise Site Saint Martin 95302 Cergy-Pontoise cedex

Journées Équations aux dérivées partielles (2004)

  • page 1-13
  • ISSN: 0752-0360

Abstract

top
We introduce by means of reproducing kernel theory and decomposition in orthogonal polynomials canonical correspondences between an interacting Fock space a reproducing kernel Hilbert space and a square integrable functions space w.r.t. a cylindrical measure. Using this correspondences we investigate the structure of the infinite dimensional canonical commutation relations. In particular we construct test functions spaces, distributions spaces and a quantization map which generalized the work of Krée-Rączka [KR] and Janas-Rudol [JR1]-[JR3].

How to cite

top

Ammari, Zied. "Canonical commutation relations and interacting Fock spaces." Journées Équations aux dérivées partielles (2004): 1-13. <http://eudml.org/doc/10594>.

@article{Ammari2004,
abstract = {We introduce by means of reproducing kernel theory and decomposition in orthogonal polynomials canonical correspondences between an interacting Fock space a reproducing kernel Hilbert space and a square integrable functions space w.r.t. a cylindrical measure. Using this correspondences we investigate the structure of the infinite dimensional canonical commutation relations. In particular we construct test functions spaces, distributions spaces and a quantization map which generalized the work of Krée-Rączka [KR] and Janas-Rudol [JR1]-[JR3].},
affiliation = {Université Cergy-Pontoise Site Saint Martin 95302 Cergy-Pontoise cedex},
author = {Ammari, Zied},
journal = {Journées Équations aux dérivées partielles},
keywords = {Schrödinger equation; commutation relations; reproducing kernel Hilbert space; quantization map},
language = {eng},
month = {6},
pages = {1-13},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Canonical commutation relations and interacting Fock spaces},
url = {http://eudml.org/doc/10594},
year = {2004},
}

TY - JOUR
AU - Ammari, Zied
TI - Canonical commutation relations and interacting Fock spaces
JO - Journées Équations aux dérivées partielles
DA - 2004/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 13
AB - We introduce by means of reproducing kernel theory and decomposition in orthogonal polynomials canonical correspondences between an interacting Fock space a reproducing kernel Hilbert space and a square integrable functions space w.r.t. a cylindrical measure. Using this correspondences we investigate the structure of the infinite dimensional canonical commutation relations. In particular we construct test functions spaces, distributions spaces and a quantization map which generalized the work of Krée-Rączka [KR] and Janas-Rudol [JR1]-[JR3].
LA - eng
KW - Schrödinger equation; commutation relations; reproducing kernel Hilbert space; quantization map
UR - http://eudml.org/doc/10594
ER -

References

top
  1. Ammari, Z.: On canonical commutation relations and quantization in infinite dimension spaces, in preparation 
  2. Aronszajn, N.:Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404 Zbl0037.20701MR51437
  3. Asai, N.: Analytic characterization of one-mode interacting Fock space, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 4 (2001),409-415 Zbl1042.81045MR1852857
  4. Accardi, L., Bożejko, M.: Interacting Fock spaces and Gaussianization of probability measures, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 1 (1998), 663-670 Zbl0922.60013MR1665281
  5. Albeverio, S., Daletsky, Yu. L., Kondratiev, Yu. G., Streit, L.,: Non-Gaussian infinite-dimensional analysis, J. Funct. Anal., 138 (1996), 311-350 Zbl0868.60041MR1395961
  6. Accardi, L., Nahni, M.: Interacting Fock spaces and orthogonal polynomials in several variables, 192-205 Zbl1046.81061MR2059860
  7. Asai, N., Kubo, I., Kuo, H. H.: Segal-Bargmann transforms of one-mode interacting Fock spaces associated with Gaussian and Poisson measures, Proc. Amer. Math. Soc., 131 (2003), 815-823 Zbl1028.46038MR1937419
  8. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math., 14 (1961), 187-214 Zbl0107.09102MR157250
  9. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory, Comm. Pure Appl. Math., 20, (1967), 1-101 Zbl0149.09601MR201959
  10. Baez, J. C., Segal, I. E., Zhou, Z.F., Introduction to algebraic and constructive quantum field theory, Princeton Series in Physics, Princeton University Press, (1992) Zbl0760.46061MR1178936
  11. Dunkl, C., Xu, Y.: Orthogonal Polynomials of Several Variables, Encyclopedia of Mathematics and its Applications, vol. 81, Cambridge Univ. Press, 2001. Zbl0964.33001MR1827871
  12. Janas, J., Rudol, K.: Toeplitz operators on the Segal-Bargmann space of infinitely many variables, Linear operators in function spaces (Timişoara, 1988), Oper. Theory Adv. Appl., 43, 217-228, Birkhäuser Zbl0705.47024MR1090129
  13. Janas, J., Rudol, K., Toeplitz operators in infinitely many variables, Topics in operator theory, operator algebras and applications (Timişoara, 1994), 147-160, Rom. Acad., Bucharest, 1995 Zbl0866.47016MR1421121
  14. Janas, J., Rudol, K.: Two approaches to Toeplitz operators on Fock space, Quantization and infinite-dimensional systems (Bialowieza, 1993), 3-7, Plenum Zbl0980.47500MR1377967
  15. Krée, P., Rączka, R.: Kernels and symbols of operators in quantum field theory, Ann. Inst. H. Poincaré Sect. A (N.S.), 28 (1978), 41-73 Zbl0386.47015MR482179
  16. Kondratiev, Y. G., Streit, L., Westerkamp, W., Yan, J.,: Generalized functions in infinite-dimensional analysis, Hiroshima Math. J., 28 (1998), 213-260 Zbl0929.46031MR1637310
  17. Martens, F. J. L.: Spaces of analytic functions on inductive/projective limits of Hilbert spaces, Dissertation, Technische Universiteit Eindhoven, Eindhoven, 1988 Zbl0662.46026MR971026
  18. von Neumann, J.: Collected works, volume 2, edited by A.H. Taub, Pergamon Press (1961) Zbl0188.00102
  19. Reeh, H.: A remark concerning canonical commutation relations, J. Math. Phys., 29 (1988), 1535-1536 Zbl0695.35196MR946325
  20. Slawny, F.: On factor representations and 𝒞 * -algebra of canonical commutation relations, Comm. Math. Phys., 24 (1971), 151-170 Zbl0225.46068MR293942
  21. Stone. M.H.: Linear transformations in Hilbert space, III: Operational methods and group theory, Proc. Nat. Acad. Sci. USA, 16 (1930), 172-175 Zbl56.0357.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.