Canonical commutation relations and interacting Fock spaces
Zied Ammari[1]
- [1] Université Cergy-Pontoise Site Saint Martin 95302 Cergy-Pontoise cedex
Journées Équations aux dérivées partielles (2004)
- page 1-13
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topAmmari, Zied. "Canonical commutation relations and interacting Fock spaces." Journées Équations aux dérivées partielles (2004): 1-13. <http://eudml.org/doc/10594>.
@article{Ammari2004,
abstract = {We introduce by means of reproducing kernel theory and decomposition in orthogonal polynomials canonical correspondences between an interacting Fock space a reproducing kernel Hilbert space and a square integrable functions space w.r.t. a cylindrical measure. Using this correspondences we investigate the structure of the infinite dimensional canonical commutation relations. In particular we construct test functions spaces, distributions spaces and a quantization map which generalized the work of Krée-Rączka [KR] and Janas-Rudol [JR1]-[JR3].},
affiliation = {Université Cergy-Pontoise Site Saint Martin 95302 Cergy-Pontoise cedex},
author = {Ammari, Zied},
journal = {Journées Équations aux dérivées partielles},
keywords = {Schrödinger equation; commutation relations; reproducing kernel Hilbert space; quantization map},
language = {eng},
month = {6},
pages = {1-13},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Canonical commutation relations and interacting Fock spaces},
url = {http://eudml.org/doc/10594},
year = {2004},
}
TY - JOUR
AU - Ammari, Zied
TI - Canonical commutation relations and interacting Fock spaces
JO - Journées Équations aux dérivées partielles
DA - 2004/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 13
AB - We introduce by means of reproducing kernel theory and decomposition in orthogonal polynomials canonical correspondences between an interacting Fock space a reproducing kernel Hilbert space and a square integrable functions space w.r.t. a cylindrical measure. Using this correspondences we investigate the structure of the infinite dimensional canonical commutation relations. In particular we construct test functions spaces, distributions spaces and a quantization map which generalized the work of Krée-Rączka [KR] and Janas-Rudol [JR1]-[JR3].
LA - eng
KW - Schrödinger equation; commutation relations; reproducing kernel Hilbert space; quantization map
UR - http://eudml.org/doc/10594
ER -
References
top- Ammari, Z.: On canonical commutation relations and quantization in infinite dimension spaces, in preparation
- Aronszajn, N.:Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404 Zbl0037.20701MR51437
- Asai, N.: Analytic characterization of one-mode interacting Fock space, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 4 (2001),409-415 Zbl1042.81045MR1852857
- Accardi, L., Bożejko, M.: Interacting Fock spaces and Gaussianization of probability measures, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 1 (1998), 663-670 Zbl0922.60013MR1665281
- Albeverio, S., Daletsky, Yu. L., Kondratiev, Yu. G., Streit, L.,: Non-Gaussian infinite-dimensional analysis, J. Funct. Anal., 138 (1996), 311-350 Zbl0868.60041MR1395961
- Accardi, L., Nahni, M.: Interacting Fock spaces and orthogonal polynomials in several variables, 192-205 Zbl1046.81061MR2059860
- Asai, N., Kubo, I., Kuo, H. H.: Segal-Bargmann transforms of one-mode interacting Fock spaces associated with Gaussian and Poisson measures, Proc. Amer. Math. Soc., 131 (2003), 815-823 Zbl1028.46038MR1937419
- Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math., 14 (1961), 187-214 Zbl0107.09102MR157250
- Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory, Comm. Pure Appl. Math., 20, (1967), 1-101 Zbl0149.09601MR201959
- Baez, J. C., Segal, I. E., Zhou, Z.F., Introduction to algebraic and constructive quantum field theory, Princeton Series in Physics, Princeton University Press, (1992) Zbl0760.46061MR1178936
- Dunkl, C., Xu, Y.: Orthogonal Polynomials of Several Variables, Encyclopedia of Mathematics and its Applications, vol. 81, Cambridge Univ. Press, 2001. Zbl0964.33001MR1827871
- Janas, J., Rudol, K.: Toeplitz operators on the Segal-Bargmann space of infinitely many variables, Linear operators in function spaces (Timişoara, 1988), Oper. Theory Adv. Appl., 43, 217-228, Birkhäuser Zbl0705.47024MR1090129
- Janas, J., Rudol, K., Toeplitz operators in infinitely many variables, Topics in operator theory, operator algebras and applications (Timişoara, 1994), 147-160, Rom. Acad., Bucharest, 1995 Zbl0866.47016MR1421121
- Janas, J., Rudol, K.: Two approaches to Toeplitz operators on Fock space, Quantization and infinite-dimensional systems (Bialowieza, 1993), 3-7, Plenum Zbl0980.47500MR1377967
- Krée, P., Rączka, R.: Kernels and symbols of operators in quantum field theory, Ann. Inst. H. Poincaré Sect. A (N.S.), 28 (1978), 41-73 Zbl0386.47015MR482179
- Kondratiev, Y. G., Streit, L., Westerkamp, W., Yan, J.,: Generalized functions in infinite-dimensional analysis, Hiroshima Math. J., 28 (1998), 213-260 Zbl0929.46031MR1637310
- Martens, F. J. L.: Spaces of analytic functions on inductive/projective limits of Hilbert spaces, Dissertation, Technische Universiteit Eindhoven, Eindhoven, 1988 Zbl0662.46026MR971026
- von Neumann, J.: Collected works, volume 2, edited by A.H. Taub, Pergamon Press (1961) Zbl0188.00102
- Reeh, H.: A remark concerning canonical commutation relations, J. Math. Phys., 29 (1988), 1535-1536 Zbl0695.35196MR946325
- Slawny, F.: On factor representations and -algebra of canonical commutation relations, Comm. Math. Phys., 24 (1971), 151-170 Zbl0225.46068MR293942
- Stone. M.H.: Linear transformations in Hilbert space, III: Operational methods and group theory, Proc. Nat. Acad. Sci. USA, 16 (1930), 172-175 Zbl56.0357.01
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.