Page 1 Next

Displaying 1 – 20 of 21

Showing per page

A moment sequence in the q-world

Anna Kula (2007)

Banach Center Publications

The aim of the paper is to present some initial results about a possible generalization of moment sequences to a so-called q-calculus. A characterization of such a q-analogue in terms of appropriate positivity conditions is also investigated. Using the result due to Maserick and Szafraniec, we adapt a classical description of Hausdorff moment sequences in terms of positive definiteness and complete monotonicity to the q-situation. This makes a link between q-positive definiteness and q-complete...

A q-analogue of complete monotonicity

Anna Kula (2008)

Colloquium Mathematicae

The aim of this paper is to give a q-analogue for complete monotonicity. We apply a classical characterization of Hausdorff moment sequences in terms of positive definiteness and complete monotonicity, adapted to the q-situation. The method due to Maserick and Szafraniec that does not need moments turns out to be useful. A definition of a q-moment sequence appears as a by-product.

A Reproducing Kernel and Toeplitz Operators in the Quantum Plane

Stephen Bruce Sontz (2013)

Communications in Mathematics

We define and analyze Toeplitz operators whose symbols are the elements of the complex quantum plane, a non-commutative, infinite dimensional algebra. In particular, the symbols do not come from an algebra of functions. The process of forming operators from non-commuting symbols can be considered as a second quantization. To do this we construct a reproducing kernel associated with the quantum plane. We also discuss the commutation relations of creation and annihilation operators which are defined...

Canonical commutation relations and interacting Fock spaces

Zied Ammari (2004)

Journées Équations aux dérivées partielles

We introduce by means of reproducing kernel theory and decomposition in orthogonal polynomials canonical correspondences between an interacting Fock space a reproducing kernel Hilbert space and a square integrable functions space w.r.t. a cylindrical measure. Using this correspondences we investigate the structure of the infinite dimensional canonical commutation relations. In particular we construct test functions spaces, distributions spaces and a quantization map which generalized the work of...

Compact differences of composition operators on weighted Dirichlet spaces

Robert Allen, Katherine Heller, Matthew Pons (2014)

Open Mathematics

Here we consider when the difference of two composition operators is compact on the weighted Dirichlet spaces . Specifically we study differences of composition operators on the Dirichlet space and S 2, the space of analytic functions whose first derivative is in H 2, and then use Calderón’s complex interpolation to extend the results to the general weighted Dirichlet spaces. As a corollary we consider composition operators induced by linear fractional self-maps of the disk.

Complétude des noyaux reproduisants dans les espaces modèles

Emmanuel Fricain (2002)

Annales de l’institut Fourier

Soit ( λ n ) n 1 une suite de Blaschke du disque unité 𝔻 et Θ une fonction intérieure. On suppose que la suite de noyaux reproduisants k Θ ( z , λ n ) : = 1 - Θ ( λ n ) ¯ Θ ( z ) 1 - λ n ¯ z n 1 est complète dans l’espace modèle K Θ p : = H p Θ H 0 p ¯ , 1 < p < + . On étudie, dans un premier temps, la stabilité de cette propriété de complétude, à la fois sous l’effet de perturbations des fréquences ( λ n ) n 1 mais également sous l’effet de perturbations de la fonction Θ . On retrouve ainsi un certain nombre de résultats classiques sur les systèmes d’exponentielles. Puis, si on suppose de plus que la suite ...

On operators Cauchy dual to 2-hyperexpansive operators: the unbounded case

Sameer Chavan (2011)

Studia Mathematica

The Cauchy dual operator T’, given by T ( T * T ) - 1 , provides a bounded unitary invariant for a closed left-invertible T. Hence, in some special cases, problems in the theory of unbounded Hilbert space operators can be related to similar problems in the theory of bounded Hilbert space operators. In particular, for a closed expansive T with finite-dimensional cokernel, it is shown that T admits the Cowen-Douglas decomposition if and only if T’ admits the Wold-type decomposition (see Definitions 1.1 and 1.2 below)....

Operator positivity and analytic models of commuting tuples of operators

Monojit Bhattacharjee, Jaydeb Sarkar (2016)

Studia Mathematica

We study analytic models of operators of class C · 0 with natural positivity assumptions. In particular, we prove that for an m-hypercontraction T C · 0 on a Hilbert space , there exist Hilbert spaces and ⁎ and a partially isometric multiplier θ ∈ ℳ (H²(),A²ₘ(⁎)) such that θ = A ² ( ) θ H ² ( ) and T P θ M z | θ , where A²ₘ(⁎) is the ⁎-valued weighted Bergman space and H²() is the -valued Hardy space over the unit disc . We then proceed to study analytic models for doubly commuting n-tuples of operators and investigate their applications...

Ordered analytic Hilbert spaces over the unit disk

Shengzhao Hou, Shuyun Wei (2008)

Studia Mathematica

Let f, g be in the analytic function ring Hol(𝔻) over the unit disk 𝔻. We say that f ⪯ g if there exist M > 0 and 0 < r < 1 such that |f(z)| ≤ M|g(z)| whenever r < |z| < 1. Let X be a Hilbert space contained in Hol(𝔻). Then X is called an ordered Hilbert space if f ⪯ g and g ∈ X imply f ∈ X. In this note, we mainly study the connection between an ordered analytic Hilbert space and its reproducing kernel. We also consider when an invariant subspace of the whole space X is similar...

Stability of the bases and frames reproducing kernels in model spaces

Anton Baranov (2005)

Annales de l'institut Fourier

We study the bases and frames of reproducing kernels in the model subspaces K Θ 2 = H 2 Θ H 2 of the Hardy class H 2 in the upper half-plane. The main problem under consideration is the stability of a basis of reproducing kernels k λ n ( z ) = ( 1 - Θ ( λ n ) ¯ Θ ( z ) ) / ( z - λ ¯ n ) under “small” perturbations of the points λ n . We propose an approach to this problem based on the recently obtained estimates of derivatives in the spaces K Θ 2 and produce estimates of admissible perturbations generalizing certain results of W.S. Cohn and E. Fricain.

Unbounded Hermitian operators and relative reproducing kernel Hilbert space

Palle Jorgensen (2010)

Open Mathematics

We study unbounded Hermitian operators with dense domain in Hilbert space. As is known, the obstruction for a Hermitian operator to be selfadjoint or to have selfadjoint extensions is measured by a pair of deficiency indices, and associated deficiency spaces; but in practical problems, the direct computation of these indices can be difficult. Instead, in this paper we identify additional structures that throw light on the problem. We will attack the problem of computing deficiency spaces for a single...

Universal interpolating sequences on some function spaces

Bahmann Yousefi, B. Tabatabaie (2005)

Czechoslovak Mathematical Journal

Let H ( K ) be the Hilbert space with reproducing kernel K . This paper characterizes some sufficient conditions for a sequence to be a universal interpolating sequence for H ( K ) .

Currently displaying 1 – 20 of 21

Page 1 Next