Scattering amplitude for the Schrödinger equation with strong magnetic field

Laurent Michel[1]

  • [1] LAGA, Université Paris 13, Villetaneuse

Journées Équations aux dérivées partielles (2005)

  • page 1-17
  • ISSN: 0752-0360

Abstract

top
In this note, we study the scattering amplitude for the Schrödinger equation with constant magnetic field. We consider the case where the strengh of the magnetic field goes to infinity and we discuss the competition between the magnetic and the electrostatic effects.

How to cite

top

Michel, Laurent. "Scattering amplitude for the Schrödinger equation with strong magnetic field." Journées Équations aux dérivées partielles (2005): 1-17. <http://eudml.org/doc/10614>.

@article{Michel2005,
abstract = {In this note, we study the scattering amplitude for the Schrödinger equation with constant magnetic field. We consider the case where the strengh of the magnetic field goes to infinity and we discuss the competition between the magnetic and the electrostatic effects.},
affiliation = {LAGA, Université Paris 13, Villetaneuse},
author = {Michel, Laurent},
journal = {Journées Équations aux dérivées partielles},
keywords = {Scattering theory; Schrödinger equation; Magnetic fields; magnetic fields; scattering theory},
language = {eng},
month = {6},
pages = {1-17},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Scattering amplitude for the Schrödinger equation with strong magnetic field},
url = {http://eudml.org/doc/10614},
year = {2005},
}

TY - JOUR
AU - Michel, Laurent
TI - Scattering amplitude for the Schrödinger equation with strong magnetic field
JO - Journées Équations aux dérivées partielles
DA - 2005/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 17
AB - In this note, we study the scattering amplitude for the Schrödinger equation with constant magnetic field. We consider the case where the strengh of the magnetic field goes to infinity and we discuss the competition between the magnetic and the electrostatic effects.
LA - eng
KW - Scattering theory; Schrödinger equation; Magnetic fields; magnetic fields; scattering theory
UR - http://eudml.org/doc/10614
ER -

References

top
  1. S. Agmon, Spectral properties of Schrödinger operators and scattering theory., Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 2 (1975), 151-218 Zbl0315.47007MR397194
  2. J. Avron, I. Herbst, B. Simon, Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J. 45 (1978), 847-883 Zbl0399.35029MR518109
  3. V. Bruneau, M. Dimassi, Weak asymptotics of the spectral shift function in strong constant magnetic field, (to appear) Zbl1121.81047
  4. M. Dimassi, Développements asymptotiques de l’opérateur de Schrödinger avec champ magnétique fort, Comm. Partial Differential Equations 26 (2001), 595-627 Zbl0926.35002MR1735654
  5. M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, (1999), Cambridge University Press, Cambridge Zbl0984.35118MR1842043
  6. C. Gérard, Semiclassical resolvent estimates for two and three-body Schrödinger operators, Comm. Partial Differential Equations 15 (1990), 1161-1178 Zbl0672.35013MR929103
  7. C. Gérard, A. Martinez, Principe d’absorption limite pour des opérateurs de Schrödinger à longue portée, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 121-123 Zbl0711.35095MR1070240
  8. H. Isozaki, H. Kitada, A remark on the microlocal resolvent estimates for two body Schrödinger operators, Publ. Res. Inst. Math. Sci. 21 (1985), 889-910 Zbl0611.35090MR817149
  9. V. P. Maslov, M. V. Fedoryuk, Semi-classical approximation in quantum mechanics, (1981), Reidel Publishing company Zbl0458.58001
  10. L. Michel, Scattering amplitude for the Schrödinger equation with strong magnetic field and strong electric potential Zbl1067.81131MR2131266
  11. L. Michel, Scattering amplitude and scattering phase for the Schrödinger equation with strong magnetic field, J. Math. Phys. 46 (2005) Zbl1067.81131
  12. E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators, Comm. Math. Phys. 78 (1980/81), 391-408 Zbl0489.47010MR603501
  13. G. D. Raikov, M. Dimassi, Spectral asymptotics for quantum Hamiltonians in strong magnetic fields, Cubo Mat. Educ. 3 (2001), 317-391 Zbl1067.81536MR1961594
  14. M. Reed, B. Simon, Methods of modern mathematical physics. IV., (1978), Academic Press, New York Zbl0401.47001MR751959
  15. D. Robert, H. Tamura, Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits, Ann. Inst. Fourier (Grenoble) 39 (1989), 155-192 Zbl0659.35026MR1011982
  16. B. R. Vaĭnberg, Quasiclassical approximation in stationary scattering problems, Funkcional. Anal. i Priložen. 11 (1977), 6-18, 96 Zbl0381.35022MR492960
  17. X. P. Wang, Barrier resonances in strong magnetic fields, Comm. Partial Differential Equations 17 (1992), 1539-1566 Zbl0795.35097MR1187621

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.