Scattering amplitude for the Schrödinger equation with strong magnetic field
- [1] LAGA, Université Paris 13, Villetaneuse
Journées Équations aux dérivées partielles (2005)
- page 1-17
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topMichel, Laurent. "Scattering amplitude for the Schrödinger equation with strong magnetic field." Journées Équations aux dérivées partielles (2005): 1-17. <http://eudml.org/doc/10614>.
@article{Michel2005,
abstract = {In this note, we study the scattering amplitude for the Schrödinger equation with constant magnetic field. We consider the case where the strengh of the magnetic field goes to infinity and we discuss the competition between the magnetic and the electrostatic effects.},
affiliation = {LAGA, Université Paris 13, Villetaneuse},
author = {Michel, Laurent},
journal = {Journées Équations aux dérivées partielles},
keywords = {Scattering theory; Schrödinger equation; Magnetic fields; magnetic fields; scattering theory},
language = {eng},
month = {6},
pages = {1-17},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Scattering amplitude for the Schrödinger equation with strong magnetic field},
url = {http://eudml.org/doc/10614},
year = {2005},
}
TY - JOUR
AU - Michel, Laurent
TI - Scattering amplitude for the Schrödinger equation with strong magnetic field
JO - Journées Équations aux dérivées partielles
DA - 2005/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 17
AB - In this note, we study the scattering amplitude for the Schrödinger equation with constant magnetic field. We consider the case where the strengh of the magnetic field goes to infinity and we discuss the competition between the magnetic and the electrostatic effects.
LA - eng
KW - Scattering theory; Schrödinger equation; Magnetic fields; magnetic fields; scattering theory
UR - http://eudml.org/doc/10614
ER -
References
top- S. Agmon, Spectral properties of Schrödinger operators and scattering theory., Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 2 (1975), 151-218 Zbl0315.47007MR397194
- J. Avron, I. Herbst, B. Simon, Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J. 45 (1978), 847-883 Zbl0399.35029MR518109
- V. Bruneau, M. Dimassi, Weak asymptotics of the spectral shift function in strong constant magnetic field, (to appear) Zbl1121.81047
- M. Dimassi, Développements asymptotiques de l’opérateur de Schrödinger avec champ magnétique fort, Comm. Partial Differential Equations 26 (2001), 595-627 Zbl0926.35002MR1735654
- M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, (1999), Cambridge University Press, Cambridge Zbl0984.35118MR1842043
- C. Gérard, Semiclassical resolvent estimates for two and three-body Schrödinger operators, Comm. Partial Differential Equations 15 (1990), 1161-1178 Zbl0672.35013MR929103
- C. Gérard, A. Martinez, Principe d’absorption limite pour des opérateurs de Schrödinger à longue portée, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 121-123 Zbl0711.35095MR1070240
- H. Isozaki, H. Kitada, A remark on the microlocal resolvent estimates for two body Schrödinger operators, Publ. Res. Inst. Math. Sci. 21 (1985), 889-910 Zbl0611.35090MR817149
- V. P. Maslov, M. V. Fedoryuk, Semi-classical approximation in quantum mechanics, (1981), Reidel Publishing company Zbl0458.58001
- L. Michel, Scattering amplitude for the Schrödinger equation with strong magnetic field and strong electric potential Zbl1067.81131MR2131266
- L. Michel, Scattering amplitude and scattering phase for the Schrödinger equation with strong magnetic field, J. Math. Phys. 46 (2005) Zbl1067.81131
- E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators, Comm. Math. Phys. 78 (1980/81), 391-408 Zbl0489.47010MR603501
- G. D. Raikov, M. Dimassi, Spectral asymptotics for quantum Hamiltonians in strong magnetic fields, Cubo Mat. Educ. 3 (2001), 317-391 Zbl1067.81536MR1961594
- M. Reed, B. Simon, Methods of modern mathematical physics. IV., (1978), Academic Press, New York Zbl0401.47001MR751959
- D. Robert, H. Tamura, Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits, Ann. Inst. Fourier (Grenoble) 39 (1989), 155-192 Zbl0659.35026MR1011982
- B. R. Vaĭnberg, Quasiclassical approximation in stationary scattering problems, Funkcional. Anal. i Priložen. 11 (1977), 6-18, 96 Zbl0381.35022MR492960
- X. P. Wang, Barrier resonances in strong magnetic fields, Comm. Partial Differential Equations 17 (1992), 1539-1566 Zbl0795.35097MR1187621
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.