Lois de conservation pour les problèmes invariants conformes et les equations de Schrödinger à potentiels antisymetriques

Tristan Rivière[1]

  • [1] Department of Mathematics, ETH Zentrum, CH-8093 Zürich, Switzerland.

Journées Équations aux dérivées partielles (2006)

  • page 1-14
  • ISSN: 0752-0360

How to cite

top

Rivière, Tristan. "Lois de conservation pour les problèmes invariants conformes et les equations de Schrödinger à potentiels antisymetriques." Journées Équations aux dérivées partielles (2006): 1-14. <http://eudml.org/doc/10627>.

@article{Rivière2006,
affiliation = {Department of Mathematics, ETH Zentrum, CH-8093 Zürich, Switzerland.},
author = {Rivière, Tristan},
journal = {Journées Équations aux dérivées partielles},
language = {fre},
month = {6},
pages = {1-14},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Lois de conservation pour les problèmes invariants conformes et les equations de Schrödinger à potentiels antisymetriques},
url = {http://eudml.org/doc/10627},
year = {2006},
}

TY - JOUR
AU - Rivière, Tristan
TI - Lois de conservation pour les problèmes invariants conformes et les equations de Schrödinger à potentiels antisymetriques
JO - Journées Équations aux dérivées partielles
DA - 2006/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 14
LA - fre
UR - http://eudml.org/doc/10627
ER -

References

top
  1. Bethuel, Fabrice « Un résultat de régularité pour les solutions de l’équation de surfaces à courbure moyenne prescrite ». (French) [A regularity result for solutions to the equation of surfaces of prescribed mean curvature] C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), no. 13, 1003–1007. Zbl0795.35024
  2. Bethuel, F. ; Ghidaglia, J.-M. Improved regularity of solutions to elliptic equations involving Jacobians and applications. J. Math. Pures Appl. (9) 72 (1993), no. 5, 441–474. Zbl0831.35025MR1239099
  3. Bethuel, Fabrice ; Ghidaglia, Jean-Michel « Some applications of the coarea formula to partial differential equations ». Geometry in partial differential equations, 1–17, World Sci. Publishing, River Edge, NJ, 1994. Zbl0879.35028MR1340209
  4. Brézis, Haim ; Coron, Jean-Michel « Multiple solutions of H -systems and Rellich’s conjecture ». Comm. Pure Appl. Math. 37 (1984), no. 2, 149–187. Zbl0537.49022
  5. Coifman, R. ; Lions, P.-L. ; Meyer, Y. ; Semmes, S. « Compensated compactness and Hardy spaces ». J. Math. Pures Appl. (9) 72 (1993), no. 3, 247–286. Zbl0864.42009MR1225511
  6. Evans Craig « Partial regularity for stationary harmonic maps into spheres » Arch. Rat. Mech. Anal. 116 (1991), 101-113. Zbl0754.58007MR1143435
  7. Frehse, Jens « A discontinuous solution of a midly nonlinear elliptic system ». Math. Z. 134 (1973), 229-230. Zbl0267.35038MR344673
  8. Freire Alexandre, Müller Stefan and Struwe Michael « Weak compactness of wave maps and harmonic maps » Ann. Inst. Henri Poincaré 15 (1998), no. 6, 725-754. Zbl0924.58011MR1650966
  9. Grüter, Michael “Conformally invariant variational integrals and the removability of isolated singularities.” Manuscripta Math. 47 (1984), no. 1-3, 85–104. Zbl0543.49020
  10. Grüter, Michael “Regularity of weak H -surfaces”. J. Reine Angew. Math. 329 (1981), 1–15. Zbl0461.53029
  11. Hildebrandt, Stefan ; Widman, Kjell-Ove « Some regularity results for quasilinear elliptic systems of second order. » Math. Z. 142 (1975), 67–86. Zbl0317.35040MR377273
  12. Heinz, Erhard « Ein Regularitätssatz für schwache Lösungen nichtlinearer elliptischer Systeme ». (German) Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1975, no. 1, 1–13. Zbl0303.35012MR382845
  13. Heinz, Erhard "Über die Regularität der Lösungen nichtlinearer Wellengleichungen". (German) Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1975, no. 2, 15–26 Zbl0303.35013MR450792
  14. Heinz, Erhard "Über die Regularität schwacher Lösungen nichtlinearer elliptischer Systeme". (German) [On the regularity of weak solutions of nonlinear elliptic systems] Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1986, no. 1, 1–15. Zbl0627.35033MR846127
  15. Hélein, Frédéric « Harmonic maps, conservation laws and moving frames ». Cambridge Tracts in Mathematics, 150. Cambridge University Press, Cambridge, 2002. Zbl1010.58010MR1913803
  16. Hildebrandt, S. « Nonlinear elliptic systems and harmonic mappings. » Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, vol 1,2,3 (Beijing, 1980), 481-615, Science Press, Beijing, 1982. Zbl0515.58012MR714341
  17. Hildebrandt, S. « Quasilinear elliptic systems in diagonal form ». Systems of nonlinear partial differential equations (Oxford, 1982), 173-217, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 111, Reidel, Dordrecht, 1983. Zbl0533.35026MR725522
  18. Jost, J ; Karcher, H « Geometrische Methoden zur Gewinnung von a-priori-Schranken für harmonische Abbildungen » Manuscripta Math. 40 (1982), 27-77.x Zbl0502.53036MR679120
  19. Kilpeläinen, T « Homogeneous and conformally invariant variational integrals » Ann. Acad. Sci. Fenn. A, I. Mat. Diss. 57, (1985). Zbl0577.49029MR822592
  20. Ladyzhenskaya, Olga A. ; Ural’tseva, Nina N. « Linear and quasilinear elliptic equations ». Academic Press, New York-London 1968. 
  21. Lamm, Tobias ; Rivière, Tristan « Conservation laws for fourth order systems in four dimensions » preprint (2006). Zbl1139.35328
  22. Lin, Fang-Hua ; Rivière, Tristan « Energy quantization for harmonic maps ». Duke Math. J. 111 (2002), no. 1, 177–193. Zbl1014.58008MR1876445
  23. Morrey, Charles B., Jr. « Multiple integrals in the calculus of variations ». Die Grundlehren der mathematischen Wissenschaften, Band 130 Springer-Verlag New York, Inc., New York 1966 Zbl0142.38701MR202511
  24. Müller, Stefan « Higher integrability of determinants and weak convergence in L 1  ». J. Reine Angew. Math. 412 (1990), 20–34. Zbl0713.49004MR1078998
  25. Rivière, Tristan « Conservation laws for conformally invariant variational problems » preprint (2006). Zbl1128.58010
  26. Schoen, Richard « Analytic aspects of the harmonic map problem » Math. Sci. Res. Inst. Publ. 2 (Seminar on nonlinear partial differential equations, Berkeley, CA, 1983), ed. S.S.Chern, Springer, New-York, 1984, 321-358. Zbl0551.58011MR765241
  27. Shatah, Jalal Weak solutions and development of singularities of the SU ( 2 ) σ -model. Comm. Pure Appl. Math. 41 (1988), no. 4, 459–469. Zbl0686.35081MR933231
  28. Struwe, Michael ; Rivière Tristan « Partial regularity for Harmonic Maps revisited » preprint (2006). 
  29. Tartar, Luc « Remarks on oscillations and Stokes’ equation. Macroscopic modelling of turbulent flows » (Nice, 1984), 24–31, Lecture Notes in Phys., 230, Springer, Berlin, 1985 Zbl0611.76042
  30. Uhlenbeck, Karen K. “Connections with L p bounds on curvature.” Comm. Math. Phys. 83 (1982), no. 1, 31–42. Zbl0499.58019
  31. Wente, Henry C. « An existence theorem for surfaces of constant mean curvature ». J. Math. Anal. Appl. 26 1969 318–344. Zbl0181.11501MR243467

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.