An existence theorem for bounded solutions of differential equations in Banach spaces
Rendiconti del Seminario Matematico della Università di Padova (1985)
- Volume: 73, page 89-94
- ISSN: 0041-8994
Access Full Article
topHow to cite
topRzepecki, Bogdan. "An existence theorem for bounded solutions of differential equations in Banach spaces." Rendiconti del Seminario Matematico della Università di Padova 73 (1985): 89-94. <http://eudml.org/doc/107991>.
@article{Rzepecki1985,
author = {Rzepecki, Bogdan},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Ambrosetti conditions; measure of noncompactness; bounded solution; Banach space},
language = {eng},
pages = {89-94},
publisher = {Seminario Matematico of the University of Padua},
title = {An existence theorem for bounded solutions of differential equations in Banach spaces},
url = {http://eudml.org/doc/107991},
volume = {73},
year = {1985},
}
TY - JOUR
AU - Rzepecki, Bogdan
TI - An existence theorem for bounded solutions of differential equations in Banach spaces
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1985
PB - Seminario Matematico of the University of Padua
VL - 73
SP - 89
EP - 94
LA - eng
KW - Ambrosetti conditions; measure of noncompactness; bounded solution; Banach space
UR - http://eudml.org/doc/107991
ER -
References
top- [1] A. Ambrosetti, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova, 39 (1967), pp. 349-360. Zbl0174.46001MR222426
- [2] G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova, 24 (1955), pp. 84-92. Zbl0064.35704MR70164
- [3] K. Deimling, Ordinary Differential Equations in Banach Spaces, Lect. Notes in Math. 596, Springer-Verlag, Berlin, 1977. Zbl0361.34050MR463601
- [4] M. Furi - A. Vignoli, On α-nonexpansive mappings and fixed points, Rend. Atti Acc. Naz. Lincei, 18 (1977), pp. 195-198. Zbl0197.11806
- [5] R.H. Martinjr., Nonlinear Operators and Differential Equations in Banach Spaces, John Wiley and Sons, New York, 1976. Zbl0333.47023MR492671
- [6] B. Rzepecki, Remarks on Schauder's fixed point principle and its applications, Bull. Acad. Polon. Sci., Sér. Math., 27 (1979), pp. 473-480. Zbl0435.47057MR560183
- [7] A. Stokes, The application of a fixed-point theorem to a variety of nonlinear stabitity problems, Proc. Nat. Acad. Sci. USA, 45 (1959), pp. 231-235. Zbl0086.07302MR104006
- [8] S. Szufla, On the existence of solutions of differential equations in Banach spaces, Bull. Acad. Polon. Sci., Sér. Math., 30 (1982), pp. 507-515. Zbl0532.34045MR718727
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.