An existence theorem for bounded solutions of differential equations in Banach spaces

Bogdan Rzepecki

Rendiconti del Seminario Matematico della Università di Padova (1985)

  • Volume: 73, page 89-94
  • ISSN: 0041-8994

How to cite

top

Rzepecki, Bogdan. "An existence theorem for bounded solutions of differential equations in Banach spaces." Rendiconti del Seminario Matematico della Università di Padova 73 (1985): 89-94. <http://eudml.org/doc/107991>.

@article{Rzepecki1985,
author = {Rzepecki, Bogdan},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Ambrosetti conditions; measure of noncompactness; bounded solution; Banach space},
language = {eng},
pages = {89-94},
publisher = {Seminario Matematico of the University of Padua},
title = {An existence theorem for bounded solutions of differential equations in Banach spaces},
url = {http://eudml.org/doc/107991},
volume = {73},
year = {1985},
}

TY - JOUR
AU - Rzepecki, Bogdan
TI - An existence theorem for bounded solutions of differential equations in Banach spaces
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1985
PB - Seminario Matematico of the University of Padua
VL - 73
SP - 89
EP - 94
LA - eng
KW - Ambrosetti conditions; measure of noncompactness; bounded solution; Banach space
UR - http://eudml.org/doc/107991
ER -

References

top
  1. [1] A. Ambrosetti, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova, 39 (1967), pp. 349-360. Zbl0174.46001MR222426
  2. [2] G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova, 24 (1955), pp. 84-92. Zbl0064.35704MR70164
  3. [3] K. Deimling, Ordinary Differential Equations in Banach Spaces, Lect. Notes in Math. 596, Springer-Verlag, Berlin, 1977. Zbl0361.34050MR463601
  4. [4] M. Furi - A. Vignoli, On α-nonexpansive mappings and fixed points, Rend. Atti Acc. Naz. Lincei, 18 (1977), pp. 195-198. Zbl0197.11806
  5. [5] R.H. Martinjr., Nonlinear Operators and Differential Equations in Banach Spaces, John Wiley and Sons, New York, 1976. Zbl0333.47023MR492671
  6. [6] B. Rzepecki, Remarks on Schauder's fixed point principle and its applications, Bull. Acad. Polon. Sci., Sér. Math., 27 (1979), pp. 473-480. Zbl0435.47057MR560183
  7. [7] A. Stokes, The application of a fixed-point theorem to a variety of nonlinear stabitity problems, Proc. Nat. Acad. Sci. USA, 45 (1959), pp. 231-235. Zbl0086.07302MR104006
  8. [8] S. Szufla, On the existence of solutions of differential equations in Banach spaces, Bull. Acad. Polon. Sci., Sér. Math., 30 (1982), pp. 507-515. Zbl0532.34045MR718727

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.