An application of a fixed point principle of Sadovskij to differential equations on the real line

Bogdan Rzepecki

Commentationes Mathematicae Universitatis Carolinae (1985)

  • Volume: 026, Issue: 4, page 713-717
  • ISSN: 0010-2628

How to cite

top

Rzepecki, Bogdan. "An application of a fixed point principle of Sadovskij to differential equations on the real line." Commentationes Mathematicae Universitatis Carolinae 026.4 (1985): 713-717. <http://eudml.org/doc/17420>.

@article{Rzepecki1985,
author = {Rzepecki, Bogdan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Banach spaces; fixed point theorem of Sadovskij; measure of noncompactness},
language = {eng},
number = {4},
pages = {713-717},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {An application of a fixed point principle of Sadovskij to differential equations on the real line},
url = {http://eudml.org/doc/17420},
volume = {026},
year = {1985},
}

TY - JOUR
AU - Rzepecki, Bogdan
TI - An application of a fixed point principle of Sadovskij to differential equations on the real line
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1985
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 026
IS - 4
SP - 713
EP - 717
LA - eng
KW - Banach spaces; fixed point theorem of Sadovskij; measure of noncompactness
UR - http://eudml.org/doc/17420
ER -

References

top
  1. A. AMBROSETTI, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova, 39 (1967), 349-360. (1967) Zbl0174.46001MR0222426
  2. J. DANEŠ, On densifying and related mappings and their application in nonlinear functional analysis, Theory of Nonlinear Operators, Akademie-Verlag, Bwelin 1974, 15-46. (1974) MR0361946
  3. K. DEIMLING, Ordinary Differential Equations in Banach Spaces, Lect. Notes in Math. 596, Springer-Verlag, Berlin 1977. (1977) Zbl0361.34050MR0463601
  4. R. H. MARTIN, Jr., Non linear Operators and Differential Equations in Banach Spaces, John Wiley and Sons, New York, 1976. (1976) MR0492671
  5. B. RZEPECKI, An existence theorem for bounded solutions of differential equations in Banach spaces, Rend. Sem. Mat. Univ. Padova 73 (1984). (1984) MR0799899
  6. B. N. SADOVSKII, Limit compact and condensing operators, Russian Math. Surveys 27 (1972), 86-144. (1972) MR0428132
  7. A. STOKES, The application of a fixed-point theorem to a variety of nonlinear stability problems, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 231-235. (1959) MR0104006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.