Density theorems for local minimizers of area-type functionals

Italo Tamanini; Giuseppe Congedo

Rendiconti del Seminario Matematico della Università di Padova (1991)

  • Volume: 85, page 217-248
  • ISSN: 0041-8994

How to cite

top

Tamanini, Italo, and Congedo, Giuseppe. "Density theorems for local minimizers of area-type functionals." Rendiconti del Seminario Matematico della Università di Padova 85 (1991): 217-248. <http://eudml.org/doc/108218>.

@article{Tamanini1991,
author = {Tamanini, Italo, Congedo, Giuseppe},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {BV functions; geometric measure theory; image segmentation; computer vision theory},
language = {eng},
pages = {217-248},
publisher = {Seminario Matematico of the University of Padua},
title = {Density theorems for local minimizers of area-type functionals},
url = {http://eudml.org/doc/108218},
volume = {85},
year = {1991},
}

TY - JOUR
AU - Tamanini, Italo
AU - Congedo, Giuseppe
TI - Density theorems for local minimizers of area-type functionals
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1991
PB - Seminario Matematico of the University of Padua
VL - 85
SP - 217
EP - 248
LA - eng
KW - BV functions; geometric measure theory; image segmentation; computer vision theory
UR - http://eudml.org/doc/108218
ER -

References

top
  1. [1] W.K. Allard - F.J. Almgren, Geometric measure theory and the calculus of variations, Proceed. Symposia Pure Math., Vol. 44, American Math. Society, Providence (1986). Zbl0577.00014MR840266
  2. [2] F.J. Almgrenjr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraint, Mem. Amer. Math. Soc., 4, n. 165 (1976). Zbl0327.49043MR420406
  3. [3] L. Ambrosio, A compactness theorem for a special class of functions of bounded variation, Boll. U.M.I., 3-B (1989), pp. 857-888. Zbl0767.49001MR1032614
  4. [4] L. Ambrosio, Existence theory for a new class of variational problems, Arch. Rational Mech. Anal., 111, (1990), pp. 291-322 Zbl0711.49064MR1068374
  5. [5] L. Ambrosio - S. Mortola - V.M. Tortorelli, Funzioni a variazione limitata generalizzate, to appear. 
  6. [6] E. Barozzi - I. Tamanini, Penalty methods for minimal surfaces with obstacles, Ann. Mat. Pura Appl., 152 (1988), pp. 139-157. Zbl0824.49035MR980976
  7. [7] M. Carriero - A. Leaci - D. Pallara - E. Pascali, Euler conditions for a minimum problem with free discontinuity surfaces, preprint Dip. Mat. Univ.Lecce (1988). 
  8. [8] G. Concedo - I. Tamanini, Note sulla regotarita dei minimi di funzionati del tipo dell'area, Rend. Acc. Naz. Sci. XL, Mem. Mat., 12 (1988), pp. 238-257. 
  9. [9] E. DeGIORGI, Su una teoria generale della misura (r - 1)-dimensionale in uno spazio ad r dimensioni, Ann. Mat. Pura Appl., 36 (1954), pp. 191-213. Zbl0055.28504MR62214
  10. [10] E. De Giorgi, Nuovi teoremi relativi alle misure (r -1)-dimensionali in uno spazio ad r dimensioni, Ricerche di Matematica, 4 (1955), pp. 95-113. Zbl0066.29903MR74499
  11. [11] E. De Giorgi, Sulla proprietà isoperimetrica dell'ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, Atti Accad. Naz. Lincei (Serie VIII), 5 (1958), pp. 33-44. Zbl0116.07901MR98331
  12. [12] E. DeGIORGI - I. AMBROSIO, Un nuovo tipo di funzionale del calcolo delle variazioni, AttiAccad. Naz. Lincei (8), 82 (1988), pp. 199-210. Zbl0715.49014MR1152641
  13. [13] E. DeGIORGI - M. CARRIERO - A. LEACI, Existence theoremfor a minimum problem withfree discontinuity set, Arch. Rational Mech. Anal., 108 (1989), pp. 195-218. Zbl0682.49002MR1012174
  14. [14] E. De Giorgi - F. Colombini - I. Piccinini, Frontiere orientate di misura minima e questioni collegate, Editrice Tecnico Scientifica, Pisa (1972). Zbl0296.49031MR179651
  15. [15] E. DeGIORGI - G. CONGEDO - I. TAMANINI, Problemi di regolarità per un nuovo tipo di funzionale del calcolo delle variazioni, AttiAccad. Naz. Lincei (8), 82 (1988), pp. 673-678. Zbl0735.49036MR1139814
  16. [16] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin-Heidelberg-New York (1969). Zbl0176.00801MR257325
  17. [17] E. Giusti, Minimal surfaces and functions of bounded variation, Boston -Basel-Stuttgart (1984). Zbl0545.49018MR775682
  18. [18] U. Massari, Insiemi di perimetro finito su varietà, Boll. U.M.I. (6), 3-B (1984), pp. 149-169. Zbl0556.49023
  19. [19] U. Massari - M. Miranda, Minimal Surfaces of Codimension One, North-Holland, Amsterdam (1984). Zbl0565.49030MR795963
  20. [20] V.G. Maz'ja, Sobolev Spaces, Springer-Verlag (1985). MR817985
  21. [21] J.M. Morel - S. Solimini, Segmentation of images by variational methods: a constructive approach, Rev. Mat. Univ. Complutense Madrid, 1 (1988), pp. 169-182. Zbl0679.68205MR977048
  22. [22] D. Mumford - J., Shah, Boundary detection by minimizing functionals, preprint. 
  23. [23] D. Mumford - J. SHAH, Optimal approximations by piecewice smooth functions and associated variational problems, Comm. Pure Appl. Math., 42 (1989), pp. 577-685. Zbl0691.49036MR997568
  24. [24] I. Tamanini, Regularity results for almost minimal oriented hypersurfaces in Rn, Quaderni Dip. Mat. Univ. Lecce, n. 1 (1984). Zbl1191.35007
  25. [25] J.E. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. Math., 103 (1976), pp. 489-539. Zbl0335.49032MR428181
  26. [26] J.E. Taylor, Crystalline variational problems, Bull. A.M.S., 84 (1978), pp. 568-588. Zbl0392.49022MR493671
  27. [27] E. Virga, Sulle forme di equilibrio di una goccia di cristallo liquido, Atti Sem. Mat. Fis. Univ. Modena, 38 (1990), pp. 29-38. Zbl0698.76109
  28. [28] A.I. Volpert, Spaces BV and quasi-linear equations, Math. USSR Sbornik, 17 (1967), pp. 225-267. 
  29. [29] L. Ambrosio - A. Braides, Functionals defined on partitions ... - I e II, J. Math. Pures Appl., 69 (1990), pp. 285-305 e pp. 307-333. Zbl0676.49029
  30. [30] G. Congedo - I. Tamanini, On the existence of solutions to a problem in multidimensional segmentation, Ann. Inst. H. Poincaré, Anal. non Linéaire, 8 (1991), pp. 175-195. Zbl0729.49003MR1096603
  31. [31] U. Massari - I. Tamanini, Regularity properties of optimal segmentations, J. Reine Angew. Math. (1991), to appear. Zbl0729.49004MR1124566

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.