On vector bundles whose general sections have all projectively equivalent zero-loci
Rendiconti del Seminario Matematico della Università di Padova (1993)
- Volume: 89, page 29-36
- ISSN: 0041-8994
Access Full Article
topHow to cite
topBallico, E.. "On vector bundles whose general sections have all projectively equivalent zero-loci." Rendiconti del Seminario Matematico della Università di Padova 89 (1993): 29-36. <http://eudml.org/doc/108290>.
@article{Ballico1993,
author = {Ballico, E.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {vector bundles; global sections; zero locus; Chern class},
language = {eng},
pages = {29-36},
publisher = {Seminario Matematico of the University of Padua},
title = {On vector bundles whose general sections have all projectively equivalent zero-loci},
url = {http://eudml.org/doc/108290},
volume = {89},
year = {1993},
}
TY - JOUR
AU - Ballico, E.
TI - On vector bundles whose general sections have all projectively equivalent zero-loci
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1993
PB - Seminario Matematico of the University of Padua
VL - 89
SP - 29
EP - 36
LA - eng
KW - vector bundles; global sections; zero locus; Chern class
UR - http://eudml.org/doc/108290
ER -
References
top- [1] M.F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3), 7 (1957), pp. 414-452. Zbl0084.17305MR131423
- [2] E. Ballico, Vector bundles, reflexive sheaves and algebraic surfaces, Rend. Sem. Mat. Univ. Milano (to appear). Zbl0806.14005MR1229484
- [3] E. Ballico, On pairs of plane curves with projectively equivalent linear sections, Comm. in Algebra (to appear). Zbl0749.14024MR1153051
- [4] E. Ballico, On projective varieties with projectively equivalent zero-dimensional linear sections, Canad. Math. Bull. (to appear). Zbl0789.14044MR1157457
- [5] E. Ballico - A. HEFEZ, On the Galois group associated to a generically étale morphism, Comm. in Algebra, 14 (1986), pp. 899-909. Zbl0593.14011MR834472
- [6] A. Fauntleroy, Quasi-projective orbit spaces for linear algebraic group actions, in: Invariant Theory, Contemporary Math., 88 (1989), pp. 399-407. Zbl0691.14030MR999996
- [7] J. Harris, The Galois group of enumerative problems, Duke Math. J., 46 (1979), pp. 685-724. Zbl0433.14040MR552521
- [8] J. Harris, Curves in projective space, (Chapter III is by D. EISENBUD and J. HARRIS), Les Presses de l'Université de Montréal (1982). Zbl0511.14014MR685427
- [9] S. Kleiman, The transversality of a general translate, Compositio Math., 28 (1974), pp. 287-297. Zbl0288.14014MR360616
- [10] S. Kleiman, Tangency and duality, in: Proc. 1984 Vancouver Conference in Algebraic Geometry, CMS-AMS Conference Proceedings, vol. 6 (1985), pp. 163-226. Zbl0601.14046MR846021
- [11] D. Laksov, Wronskians and Plucker formulas for linear systems on curves, Ann. Scient. Ec. Norm. Sup. (4), 17 (1984), pp. 45-66. Zbl0555.14008MR744067
- [12] J. Rathmann, The uniform position principle for curves in characteristic p, Math. Ann., 276 (1987), pp. 565-579. Zbl0595.14041MR879536
- [13] C.S. Seshadri, Quotient spaces modulo reductive algebraic groups, Ann. Math., 95 (1972), pp. 511-556. Zbl0241.14024MR309940
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.