On vector bundles whose general sections have all projectively equivalent zero-loci

E. Ballico

Rendiconti del Seminario Matematico della Università di Padova (1993)

  • Volume: 89, page 29-36
  • ISSN: 0041-8994

How to cite

top

Ballico, E.. "On vector bundles whose general sections have all projectively equivalent zero-loci." Rendiconti del Seminario Matematico della Università di Padova 89 (1993): 29-36. <http://eudml.org/doc/108290>.

@article{Ballico1993,
author = {Ballico, E.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {vector bundles; global sections; zero locus; Chern class},
language = {eng},
pages = {29-36},
publisher = {Seminario Matematico of the University of Padua},
title = {On vector bundles whose general sections have all projectively equivalent zero-loci},
url = {http://eudml.org/doc/108290},
volume = {89},
year = {1993},
}

TY - JOUR
AU - Ballico, E.
TI - On vector bundles whose general sections have all projectively equivalent zero-loci
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1993
PB - Seminario Matematico of the University of Padua
VL - 89
SP - 29
EP - 36
LA - eng
KW - vector bundles; global sections; zero locus; Chern class
UR - http://eudml.org/doc/108290
ER -

References

top
  1. [1] M.F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3), 7 (1957), pp. 414-452. Zbl0084.17305MR131423
  2. [2] E. Ballico, Vector bundles, reflexive sheaves and algebraic surfaces, Rend. Sem. Mat. Univ. Milano (to appear). Zbl0806.14005MR1229484
  3. [3] E. Ballico, On pairs of plane curves with projectively equivalent linear sections, Comm. in Algebra (to appear). Zbl0749.14024MR1153051
  4. [4] E. Ballico, On projective varieties with projectively equivalent zero-dimensional linear sections, Canad. Math. Bull. (to appear). Zbl0789.14044MR1157457
  5. [5] E. Ballico - A. HEFEZ, On the Galois group associated to a generically étale morphism, Comm. in Algebra, 14 (1986), pp. 899-909. Zbl0593.14011MR834472
  6. [6] A. Fauntleroy, Quasi-projective orbit spaces for linear algebraic group actions, in: Invariant Theory, Contemporary Math., 88 (1989), pp. 399-407. Zbl0691.14030MR999996
  7. [7] J. Harris, The Galois group of enumerative problems, Duke Math. J., 46 (1979), pp. 685-724. Zbl0433.14040MR552521
  8. [8] J. Harris, Curves in projective space, (Chapter III is by D. EISENBUD and J. HARRIS), Les Presses de l'Université de Montréal (1982). Zbl0511.14014MR685427
  9. [9] S. Kleiman, The transversality of a general translate, Compositio Math., 28 (1974), pp. 287-297. Zbl0288.14014MR360616
  10. [10] S. Kleiman, Tangency and duality, in: Proc. 1984 Vancouver Conference in Algebraic Geometry, CMS-AMS Conference Proceedings, vol. 6 (1985), pp. 163-226. Zbl0601.14046MR846021
  11. [11] D. Laksov, Wronskians and Plucker formulas for linear systems on curves, Ann. Scient. Ec. Norm. Sup. (4), 17 (1984), pp. 45-66. Zbl0555.14008MR744067
  12. [12] J. Rathmann, The uniform position principle for curves in characteristic p, Math. Ann., 276 (1987), pp. 565-579. Zbl0595.14041MR879536
  13. [13] C.S. Seshadri, Quotient spaces modulo reductive algebraic groups, Ann. Math., 95 (1972), pp. 511-556. Zbl0241.14024MR309940

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.