Infinitely many spacelike periodic trajectories on a class of Lorentz manifolds

Carlo Greco

Rendiconti del Seminario Matematico della Università di Padova (1994)

  • Volume: 91, page 251-263
  • ISSN: 0041-8994

How to cite

top

Greco, Carlo. "Infinitely many spacelike periodic trajectories on a class of Lorentz manifolds." Rendiconti del Seminario Matematico della Università di Padova 91 (1994): 251-263. <http://eudml.org/doc/108322>.

@article{Greco1994,
author = {Greco, Carlo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {geodesics; static spacetimes; spacelike geodesics; Killing field; periodic; variational methods},
language = {eng},
pages = {251-263},
publisher = {Seminario Matematico of the University of Padua},
title = {Infinitely many spacelike periodic trajectories on a class of Lorentz manifolds},
url = {http://eudml.org/doc/108322},
volume = {91},
year = {1994},
}

TY - JOUR
AU - Greco, Carlo
TI - Infinitely many spacelike periodic trajectories on a class of Lorentz manifolds
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1994
PB - Seminario Matematico of the University of Padua
VL - 91
SP - 251
EP - 263
LA - eng
KW - geodesics; static spacetimes; spacelike geodesics; Killing field; periodic; variational methods
UR - http://eudml.org/doc/108322
ER -

References

top
  1. [1] A. Amrosetti - P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), pp. 349-381. Zbl0273.49063MR370183
  2. [2] V. Benci - D. Fortunato, Periodic trajectories for the Lorentz-metric of a static gravitational field, in: Proc. on Variational Problems (D. BERESTICKI - J. M. CORON - E. EKELAND, Eds.), Paris (1989), pp. 13-18. Zbl0719.58009MR1205170
  3. [3] V. Benci - D. FORTUNATO, Existence of geodesics for the Lorentz-metric of a stationary gravitational field, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 7 (1) (1990). Zbl0697.58011MR1046082
  4. [4] V. Benci - D. Fortunato, On the existence of infinitely many geodesic on space-time manifolds, to appear on Adv. Math. Zbl0808.58016MR1275190
  5. [5] V. Benci - D. FORTUNATO - F. GIANNONI, On the existence of multiple geodesics in static space-time, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 8 (1991), pp. 79-102. Zbl0716.53057MR1094653
  6. [6] G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitate, Rend. Ist. Lomb. Sc.(A), 112 (1978), pp. 332-336. Zbl0436.58006
  7. [7] C. Greco, Periodic trajectories for a class of Lorentz-metrics of a time-dependent gravitational field, Math. Ann., 287 (1990), pp. 515-521. Zbl0681.53033MR1060690
  8. [8] C. Greco, Periodic trajectories in static space-times, Proc. Royal Soc. Edinburgh, 113-A (1989), pp. 99-103. Zbl0691.53052MR1025457
  9. [9] C. Greco, Multiple periodic trajectories on stationary space-times, Ann. Mat. Pura Appl., (IV), 162 (1992), pp. 337-348. Zbl0777.53066MR1199661
  10. [10] A. Masiello, Timelike periodic trajectories in stationary Lorentz manifold, Nonlin. Anal. T.M.A., 19 (1992), pp. 531-545. Zbl0769.58007MR1183661
  11. [11] A. Masiello, On the existence of a closed geodesic on stationary Lorentz manifold, J. Diff. Eqs., 104 (1993), pp. 48-59. Zbl0808.53058MR1224121
  12. [12] A. Masiello - L. PISANI, Existence oftimelike trajectory for a time-dependent Lorentz metric, Ann. Univ. Ferrara, (VII), 36 (1990), pp. 207-222. Zbl0756.53030MR1151493
  13. [13] J. Mawhin - M. WILLEM, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York (1989). Zbl0676.58017MR982267
  14. [14] B. O'Neill, Semi-Riemannian Geometry. With Applications to Relativity, Academic Press, London (1983). Zbl0531.53051
  15. [15] K. Uhlenbeck, A Morse theory for geodesics on a Lorentz manifold, Topology, 14 (1975), pp. 69-90. Zbl0323.58010MR383461

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.