Infinitely many spacelike periodic trajectories on a class of Lorentz manifolds
Rendiconti del Seminario Matematico della Università di Padova (1994)
- Volume: 91, page 251-263
- ISSN: 0041-8994
Access Full Article
topHow to cite
topGreco, Carlo. "Infinitely many spacelike periodic trajectories on a class of Lorentz manifolds." Rendiconti del Seminario Matematico della Università di Padova 91 (1994): 251-263. <http://eudml.org/doc/108322>.
@article{Greco1994,
author = {Greco, Carlo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {geodesics; static spacetimes; spacelike geodesics; Killing field; periodic; variational methods},
language = {eng},
pages = {251-263},
publisher = {Seminario Matematico of the University of Padua},
title = {Infinitely many spacelike periodic trajectories on a class of Lorentz manifolds},
url = {http://eudml.org/doc/108322},
volume = {91},
year = {1994},
}
TY - JOUR
AU - Greco, Carlo
TI - Infinitely many spacelike periodic trajectories on a class of Lorentz manifolds
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1994
PB - Seminario Matematico of the University of Padua
VL - 91
SP - 251
EP - 263
LA - eng
KW - geodesics; static spacetimes; spacelike geodesics; Killing field; periodic; variational methods
UR - http://eudml.org/doc/108322
ER -
References
top- [1] A. Amrosetti - P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), pp. 349-381. Zbl0273.49063MR370183
- [2] V. Benci - D. Fortunato, Periodic trajectories for the Lorentz-metric of a static gravitational field, in: Proc. on Variational Problems (D. BERESTICKI - J. M. CORON - E. EKELAND, Eds.), Paris (1989), pp. 13-18. Zbl0719.58009MR1205170
- [3] V. Benci - D. FORTUNATO, Existence of geodesics for the Lorentz-metric of a stationary gravitational field, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 7 (1) (1990). Zbl0697.58011MR1046082
- [4] V. Benci - D. Fortunato, On the existence of infinitely many geodesic on space-time manifolds, to appear on Adv. Math. Zbl0808.58016MR1275190
- [5] V. Benci - D. FORTUNATO - F. GIANNONI, On the existence of multiple geodesics in static space-time, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 8 (1991), pp. 79-102. Zbl0716.53057MR1094653
- [6] G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitate, Rend. Ist. Lomb. Sc.(A), 112 (1978), pp. 332-336. Zbl0436.58006
- [7] C. Greco, Periodic trajectories for a class of Lorentz-metrics of a time-dependent gravitational field, Math. Ann., 287 (1990), pp. 515-521. Zbl0681.53033MR1060690
- [8] C. Greco, Periodic trajectories in static space-times, Proc. Royal Soc. Edinburgh, 113-A (1989), pp. 99-103. Zbl0691.53052MR1025457
- [9] C. Greco, Multiple periodic trajectories on stationary space-times, Ann. Mat. Pura Appl., (IV), 162 (1992), pp. 337-348. Zbl0777.53066MR1199661
- [10] A. Masiello, Timelike periodic trajectories in stationary Lorentz manifold, Nonlin. Anal. T.M.A., 19 (1992), pp. 531-545. Zbl0769.58007MR1183661
- [11] A. Masiello, On the existence of a closed geodesic on stationary Lorentz manifold, J. Diff. Eqs., 104 (1993), pp. 48-59. Zbl0808.53058MR1224121
- [12] A. Masiello - L. PISANI, Existence oftimelike trajectory for a time-dependent Lorentz metric, Ann. Univ. Ferrara, (VII), 36 (1990), pp. 207-222. Zbl0756.53030MR1151493
- [13] J. Mawhin - M. WILLEM, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York (1989). Zbl0676.58017MR982267
- [14] B. O'Neill, Semi-Riemannian Geometry. With Applications to Relativity, Academic Press, London (1983). Zbl0531.53051
- [15] K. Uhlenbeck, A Morse theory for geodesics on a Lorentz manifold, Topology, 14 (1975), pp. 69-90. Zbl0323.58010MR383461
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.