Existence of geodesics for the Lorentz metric of a stationary gravitational field

Vieri Benci; Donato Fortunato

Annales de l'I.H.P. Analyse non linéaire (1990)

  • Volume: 7, Issue: 1, page 27-35
  • ISSN: 0294-1449

How to cite

top

Benci, Vieri, and Fortunato, Donato. "Existence of geodesics for the Lorentz metric of a stationary gravitational field." Annales de l'I.H.P. Analyse non linéaire 7.1 (1990): 27-35. <http://eudml.org/doc/78212>.

@article{Benci1990,
author = {Benci, Vieri, Fortunato, Donato},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {variational methods; saddle point theorem; Lorentzian metric; geodesics},
language = {eng},
number = {1},
pages = {27-35},
publisher = {Gauthier-Villars},
title = {Existence of geodesics for the Lorentz metric of a stationary gravitational field},
url = {http://eudml.org/doc/78212},
volume = {7},
year = {1990},
}

TY - JOUR
AU - Benci, Vieri
AU - Fortunato, Donato
TI - Existence of geodesics for the Lorentz metric of a stationary gravitational field
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1990
PB - Gauthier-Villars
VL - 7
IS - 1
SP - 27
EP - 35
LA - eng
KW - variational methods; saddle point theorem; Lorentzian metric; geodesics
UR - http://eudml.org/doc/78212
ER -

References

top
  1. [1] A. Avez, Essais de géométrie riemannienne hyperbolique globale. Application à la Relativité Générale, Ann. Inst. Fourier, Vol. 132, 1963, pp. 105-190. Zbl0188.54801MR167940
  2. [2] P. Bartolo, V. Benci and D. Fortunato, Abstract Critical Point Theorems and Applications to Some Nonlinear Problems with "Strong Resonance" at Infinity, Journal of nonlinear Anal. T.M.A., Vol. 7, 1983, pp.981-1012. Zbl0522.58012MR713209
  3. [3] S.W. Hawking and G.F.R. Ellis, The Large scale Structure of Space-Time, Cambridge University Press, 1973. Zbl0265.53054MR424186
  4. [4] L. Landau and E. Lifchitz, Théorie des champs, Mir, 1970. 
  5. [5] R. Penrose, Techniques of Differential Topology in Relativity, Conference board of Math. Sc., Vol. 7, S.I.A.M., 1972. Zbl0321.53001MR469146
  6. [6] P.H. Rabinowitz, Some Mini-Max Theorems and Applications to Nonlinear Partial Differential Equations, Nonlinear Analysis, CESARI, KANNAN, WEINBERGER Ed., Academic Press, 1978, pp. 161-177. Zbl0466.58015MR501092
  7. [7] P.H. Rabinowitz, Mini-Max Methods in Critical Point Theory with Applications to Differential Equations, Conf. board Math. Sc. A.M.S., Vol. 65, 1986. Zbl0609.58002
  8. [8] H.J. Seifert, Global Connectivity by Time Like Geodesic, Zs. f. Naturfor., Vol. 22 a, 1967, pp. 1256-1360. Zbl0163.43701MR225556

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.