Semicontinuity and relaxation properties of a curvature depending functional in 2D

G. Bellettini; G. Dal Maso; M. Paolini

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)

  • Volume: 20, Issue: 2, page 247-297
  • ISSN: 0391-173X

How to cite

top

Bellettini, G., Dal Maso, G., and Paolini, M.. "Semicontinuity and relaxation properties of a curvature depending functional in 2D." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.2 (1993): 247-297. <http://eudml.org/doc/84148>.

@article{Bellettini1993,
author = {Bellettini, G., Dal Maso, G., Paolini, M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {curvature; Hausdorff measure; semicontinuity},
language = {eng},
number = {2},
pages = {247-297},
publisher = {Scuola normale superiore},
title = {Semicontinuity and relaxation properties of a curvature depending functional in 2D},
url = {http://eudml.org/doc/84148},
volume = {20},
year = {1993},
}

TY - JOUR
AU - Bellettini, G.
AU - Dal Maso, G.
AU - Paolini, M.
TI - Semicontinuity and relaxation properties of a curvature depending functional in 2D
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1993
PB - Scuola normale superiore
VL - 20
IS - 2
SP - 247
EP - 297
LA - eng
KW - curvature; Hausdorff measure; semicontinuity
UR - http://eudml.org/doc/84148
ER -

References

top
  1. [1] M. Berger - B. Gostiaux, Differential Geometry: Manifolds, Curves and Surfaces, Springer-Verlag, New York, 1988. Zbl0629.53001MR917479
  2. [2] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Longman Scientific & Technical, Harlow, 1989. Zbl0669.49005MR1020296
  3. [3] H. Cartan, Théorie Elémentaire des Fonctions Analytiques d'Une ou Plusieurs Variables Complexes, Hermann, Paris, 1961. Zbl0094.04401MR147623
  4. [4] E. De Giorgi, Some remarks on Γ-convergence and least squares method, in Proc. Composite media and homogenization theory (Trieste, 1990, G. Dal Maso, G.F. Dell'Antonio, eds.), Birkhäuser, Boston, 1991, pp. 135-142. Zbl0747.49008
  5. [5] M.P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, New Jersey, 1976. Zbl0326.53001MR394451
  6. [6] J.P. Duggan, W2,p regularity for varifolds with mean curvature, Comm. Partial Differential Equations, 11 (1986), pp. 903-926. Zbl0634.35022MR844169
  7. [7] J.P. Duggan, Regularity theorems for varifolds with mean curvature, Indiana Univ. Math. J., 35 (1986), pp. 117-144. Zbl0595.49029MR825631
  8. [8] L. Euler, Additamentum I de curvis elasticis, methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, Opera omnia, Lausanne, I24 (1744), pp. 231-297. 
  9. [9] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin, 1968. Zbl0176.00801MR257325
  10. [10] P. Funk, Variationsrechnung und ihre Anwendung in Physik und Technik, Springer-Verlag, Berlin. 1962. Zbl0119.09101MR152914
  11. [11] D. Gilbarg - N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
  12. [12] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984. Zbl0545.49018MR775682
  13. [13] J.E. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimizing curvature, Indiana Univ, Math. J., 35 (1986), pp. 45-71. Zbl0561.53008MR825628
  14. [14] A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover, New York, 1944. Zbl0063.03651MR10851
  15. [15] D. Mumford - M. Nitzberg, The 2.1-D sketch, in Proc. European Conference on Computer Vision (1990). 
  16. [16] O. Ore, Theory of Graphs, American Mathematical Society Colloquium Publications (XXXVIII), Providence, Rhode Island, 1962. Zbl0105.35401MR150753
  17. [17] R.C. Penner, An Introduction to train tracks, in Low dimensional topology and Kleinian groups Edited by D.B.A. Epstein, London Math. Soc., Lecture Notes Ser., Cambridge Univ. Press.Cambridge-New York. Zbl0623.57005MR903859
  18. [18] L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Centre of Mathematical Analysis, Canberra, 3, 1984. Zbl0546.49019MR756417
  19. [19] W.P. Thurtson, The Geometry and Topology of 3-Manifolds, Princeton Univ. Press, Princeton1979. 

Citations in EuDML Documents

top
  1. Maria Giovanna Mora, Massimiliano Morini, Functionals depending on curvatures with constraints
  2. Vicent Caselles, Simon Masnou, Jean-Michel Morel, Catalina Sbert, Image Interpolation
  3. Carlo-Romano Grisanti, On a functional depending on curvature and edges
  4. Luca Mugnai, Gamma-convergence results for phase-field approximations of the 2D-Euler Elastica Functional
  5. G. Bellettini, L. Mugnai, Characterization and representation of the lower semicontinuous envelope of the elastica functional
  6. Simon Masnou, Jean-Michel Morel, On a variational theory of image amodal completion
  7. Andrea Braides, Giuseppe Riey, A variational model in image processing with focal points

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.