Semicontinuity and relaxation properties of a curvature depending functional in 2D
G. Bellettini; G. Dal Maso; M. Paolini
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)
- Volume: 20, Issue: 2, page 247-297
- ISSN: 0391-173X
Access Full Article
topHow to cite
topBellettini, G., Dal Maso, G., and Paolini, M.. "Semicontinuity and relaxation properties of a curvature depending functional in 2D." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.2 (1993): 247-297. <http://eudml.org/doc/84148>.
@article{Bellettini1993,
author = {Bellettini, G., Dal Maso, G., Paolini, M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {curvature; Hausdorff measure; semicontinuity},
language = {eng},
number = {2},
pages = {247-297},
publisher = {Scuola normale superiore},
title = {Semicontinuity and relaxation properties of a curvature depending functional in 2D},
url = {http://eudml.org/doc/84148},
volume = {20},
year = {1993},
}
TY - JOUR
AU - Bellettini, G.
AU - Dal Maso, G.
AU - Paolini, M.
TI - Semicontinuity and relaxation properties of a curvature depending functional in 2D
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1993
PB - Scuola normale superiore
VL - 20
IS - 2
SP - 247
EP - 297
LA - eng
KW - curvature; Hausdorff measure; semicontinuity
UR - http://eudml.org/doc/84148
ER -
References
top- [1] M. Berger - B. Gostiaux, Differential Geometry: Manifolds, Curves and Surfaces, Springer-Verlag, New York, 1988. Zbl0629.53001MR917479
- [2] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Longman Scientific & Technical, Harlow, 1989. Zbl0669.49005MR1020296
- [3] H. Cartan, Théorie Elémentaire des Fonctions Analytiques d'Une ou Plusieurs Variables Complexes, Hermann, Paris, 1961. Zbl0094.04401MR147623
- [4] E. De Giorgi, Some remarks on Γ-convergence and least squares method, in Proc. Composite media and homogenization theory (Trieste, 1990, G. Dal Maso, G.F. Dell'Antonio, eds.), Birkhäuser, Boston, 1991, pp. 135-142. Zbl0747.49008
- [5] M.P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, New Jersey, 1976. Zbl0326.53001MR394451
- [6] J.P. Duggan, W2,p regularity for varifolds with mean curvature, Comm. Partial Differential Equations, 11 (1986), pp. 903-926. Zbl0634.35022MR844169
- [7] J.P. Duggan, Regularity theorems for varifolds with mean curvature, Indiana Univ. Math. J., 35 (1986), pp. 117-144. Zbl0595.49029MR825631
- [8] L. Euler, Additamentum I de curvis elasticis, methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, Opera omnia, Lausanne, I24 (1744), pp. 231-297.
- [9] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin, 1968. Zbl0176.00801MR257325
- [10] P. Funk, Variationsrechnung und ihre Anwendung in Physik und Technik, Springer-Verlag, Berlin. 1962. Zbl0119.09101MR152914
- [11] D. Gilbarg - N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
- [12] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984. Zbl0545.49018MR775682
- [13] J.E. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimizing curvature, Indiana Univ, Math. J., 35 (1986), pp. 45-71. Zbl0561.53008MR825628
- [14] A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover, New York, 1944. Zbl0063.03651MR10851
- [15] D. Mumford - M. Nitzberg, The 2.1-D sketch, in Proc. European Conference on Computer Vision (1990).
- [16] O. Ore, Theory of Graphs, American Mathematical Society Colloquium Publications (XXXVIII), Providence, Rhode Island, 1962. Zbl0105.35401MR150753
- [17] R.C. Penner, An Introduction to train tracks, in Low dimensional topology and Kleinian groups Edited by D.B.A. Epstein, London Math. Soc., Lecture Notes Ser., Cambridge Univ. Press.Cambridge-New York. Zbl0623.57005MR903859
- [18] L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Centre of Mathematical Analysis, Canberra, 3, 1984. Zbl0546.49019MR756417
- [19] W.P. Thurtson, The Geometry and Topology of 3-Manifolds, Princeton Univ. Press, Princeton1979.
Citations in EuDML Documents
top- Maria Giovanna Mora, Massimiliano Morini, Functionals depending on curvatures with constraints
- Vicent Caselles, Simon Masnou, Jean-Michel Morel, Catalina Sbert, Image Interpolation
- Carlo-Romano Grisanti, On a functional depending on curvature and edges
- Luca Mugnai, Gamma-convergence results for phase-field approximations of the 2D-Euler Elastica Functional
- G. Bellettini, L. Mugnai, Characterization and representation of the lower semicontinuous envelope of the elastica functional
- Simon Masnou, Jean-Michel Morel, On a variational theory of image amodal completion
- Andrea Braides, Giuseppe Riey, A variational model in image processing with focal points
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.