Sur le -module associé au complexe des cycles proches et ses variantes -adiques
Rendiconti del Seminario Matematico della Università di Padova (2004)
- Volume: 112, page 77-95
- ISSN: 0041-8994
Access Full Article
topHow to cite
topGros, Michel. "Sur le $\mathcal {D}$-module associé au complexe des cycles proches et ses variantes $p$-adiques." Rendiconti del Seminario Matematico della Università di Padova 112 (2004): 77-95. <http://eudml.org/doc/108649>.
@article{Gros2004,
author = {Gros, Michel},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {fre},
pages = {77-95},
publisher = {Seminario Matematico of the University of Padua},
title = {Sur le $\mathcal \{D\}$-module associé au complexe des cycles proches et ses variantes $p$-adiques},
url = {http://eudml.org/doc/108649},
volume = {112},
year = {2004},
}
TY - JOUR
AU - Gros, Michel
TI - Sur le $\mathcal {D}$-module associé au complexe des cycles proches et ses variantes $p$-adiques
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2004
PB - Seminario Matematico of the University of Padua
VL - 112
SP - 77
EP - 95
LA - fre
UR - http://eudml.org/doc/108649
ER -
References
top- [1] P. BERTHELOT, Cohomologie rigide et théorie des D-modules, Lecture Notes in Maths, 1454 (1990), pp. 80-124. Zbl0722.14008MR1094848
- [2] P. BERTHELOT, Cohérence différentielle des algèbres de fonctions surconvergentes, C. R. Acad. Sci., Paris, Série I, 323, n. 1 (1996), pp. 35-40. Zbl0871.14014MR1401625
- [3] P. BERTHELOT, Finitude et pureté cohomologique en cohomologie rigide, Inv. Math., 128 (1997), pp. 329-377. Zbl0908.14005MR1440308
- [4] P. BERTHELOT, D-modules arithmétiques I. Opérateurs différentiels de niveau fini, Ann. scient. Ec. Norm. Sup., t. 29 (1996), pp. 185-272. Zbl0886.14004MR1373933
- [5] P. BERTHELOT, Introduction à la théorie arithmétique des D-modules, Astérisque, 279 (2002), pp. 1-80. Zbl1098.14010MR1922828
- [6] F. J. CALDERON-MORENO, Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor, Ann. Sci. ENS, 32, no. 5 (1999), pp. 701-714. Zbl0955.14013MR1710757
- [7] F. J. CALDERON-MORENO - L. NARVÁEZ-MACARRO, The module Df s for locally quasi-homogeneous free divisors, Compositio Math., 134, n.1, (2002), pp. 59-74. Zbl1017.32023MR1931962
- [8] B. CHIARELLOTTO, Rigid cohomology and invariant cycles for a semi-stable log scheme, Duke Math. J., 97, n. 1 (1999), pp. 155-169. Zbl0985.14009MR1682272
- [9] D. COX - J. LITTLE - D. O’SHEA, Ideals, varieties and algorithms, UTM Springer. Second edition (1996). Zbl0861.13012
- [10] P. DELIGNE, La conjecture de Weil. II, Publ. Math. Inst. Hautes Etud. Sci., 52 (1980), pp. 137-252. Zbl0456.14014MR601520
- [11] M. GROS - L. NARVÁEZ-MACARRO, Cohomologie évanescente p-adique: calculs locaux, Rend. Sem. Mat. Univ. Padova, 104 (2000), pp. 71-90. Zbl1167.14309MR1809351
- [12] C. HUYGHE, Un théorème de comparaison entre les faisceaux d’opérateurs différentiels de Berthelot et de Mebkhout-Narvaez-Macarro, J. Algebraic Geometry, 12 (2003), pp. 147-199. Zbl1053.14015MR1948688
- [13] O. HYODO, On the de Rham-Witt complex attached to a semi-stable family, Compos. Math., 78, n. 3 (1991), pp. 241-260. Zbl0742.14015MR1106296
- [14] O. HYODO - K. KATO, Semi-stable reduction and crystalline cohomology with logarithmic poles, Périodes p-adiques, Astérisque, 223 (1994), pp. 221-268. Zbl0852.14004MR1293974
- [15] K. KATO, Crystals with log poles and limit Hodge structures in the positive and mixed characteristics, Notes manuscrites (1988).
- [16] P. MAISONOBE - Z. MEBKHOUT, Le théorème de comparaison pour les cycles évanescents, Proceedings du CIMPE, A paraitre.
- [17] B. MALGRANGE, Polynômes de Bernstein-Sato et cohomologie évanescente, Astérisque, 101-102 (1983), pp. 243-267. Zbl0528.32007MR737934
- [18] Z. MEBKHOUT - L. NARVÁEZ-MACARRO, Sur les coefficients de De RhamGrothendieck des variétés algébriques, Lecture Notes in Maths, 1454 (1990), pp. 267-308. Zbl0727.14011MR1094858
- [19] A. MOKRANE, La suite spectrale des poids en cohomologie de Hyodo-Kato, Duke Math. J., 72 (1993), pp. 301-337. Zbl0834.14010MR1248675
- [20] L. NARVÁEZ-MACARRO, Division theorem over the Dwork-Monsky-Washnitzer completion of polynomial rings and Weyl algebras, in Rings, Hopf algebras and Brauer groups. Lect. Notes in Pure and Appl. Math. (Marcel Dekker), 197 (1998), pp. 175-191. Zbl0944.13018MR1615789
- [21] C. SABBAH, D-modules et cycles évanescents (d’après Malgrange et Kashiwara), Travaux en cours n. 24 (conférence de la Rábida 1984) (1987), pp. 53-98. Zbl0623.32013MR907935
- [22] M. SAITO, Modules de Hodge polarisables. Publ. of the RIMS. Kyoto Univ., 24 (1988), pp. 849-995. Zbl0691.14007MR1000123
- [23] J. STEENBRINK, Limits of Hodge structures, Inv. Math., 31 (1976), pp. 229-257. Zbl0303.14002MR429885
- [24] J. STEENBRINK - S. ZUCKER, Variation of mixed Hodge structure. I, Inv. Math., 80 (1985), pp. 489-542. Zbl0626.14007MR791673
- [25] S. ZUCKER, Variation of mixed Hodge structure. II , Inv. Math., 80 (1985), pp. 543-565. Zbl0615.14003MR791674
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.