Sur le 𝒟 -module associé au complexe des cycles proches et ses variantes p -adiques

Michel Gros

Rendiconti del Seminario Matematico della Università di Padova (2004)

  • Volume: 112, page 77-95
  • ISSN: 0041-8994

How to cite

top

Gros, Michel. "Sur le $\mathcal {D}$-module associé au complexe des cycles proches et ses variantes $p$-adiques." Rendiconti del Seminario Matematico della Università di Padova 112 (2004): 77-95. <http://eudml.org/doc/108649>.

@article{Gros2004,
author = {Gros, Michel},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {fre},
pages = {77-95},
publisher = {Seminario Matematico of the University of Padua},
title = {Sur le $\mathcal \{D\}$-module associé au complexe des cycles proches et ses variantes $p$-adiques},
url = {http://eudml.org/doc/108649},
volume = {112},
year = {2004},
}

TY - JOUR
AU - Gros, Michel
TI - Sur le $\mathcal {D}$-module associé au complexe des cycles proches et ses variantes $p$-adiques
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2004
PB - Seminario Matematico of the University of Padua
VL - 112
SP - 77
EP - 95
LA - fre
UR - http://eudml.org/doc/108649
ER -

References

top
  1. [1] P. BERTHELOT, Cohomologie rigide et théorie des D-modules, Lecture Notes in Maths, 1454 (1990), pp. 80-124. Zbl0722.14008MR1094848
  2. [2] P. BERTHELOT, Cohérence différentielle des algèbres de fonctions surconvergentes, C. R. Acad. Sci., Paris, Série I, 323, n. 1 (1996), pp. 35-40. Zbl0871.14014MR1401625
  3. [3] P. BERTHELOT, Finitude et pureté cohomologique en cohomologie rigide, Inv. Math., 128 (1997), pp. 329-377. Zbl0908.14005MR1440308
  4. [4] P. BERTHELOT, D-modules arithmétiques I. Opérateurs différentiels de niveau fini, Ann. scient. Ec. Norm. Sup., t. 29 (1996), pp. 185-272. Zbl0886.14004MR1373933
  5. [5] P. BERTHELOT, Introduction à la théorie arithmétique des D-modules, Astérisque, 279 (2002), pp. 1-80. Zbl1098.14010MR1922828
  6. [6] F. J. CALDERON-MORENO, Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor, Ann. Sci. ENS, 32, no. 5 (1999), pp. 701-714. Zbl0955.14013MR1710757
  7. [7] F. J. CALDERON-MORENO - L. NARVÁEZ-MACARRO, The module Df s for locally quasi-homogeneous free divisors, Compositio Math., 134, n.1, (2002), pp. 59-74. Zbl1017.32023MR1931962
  8. [8] B. CHIARELLOTTO, Rigid cohomology and invariant cycles for a semi-stable log scheme, Duke Math. J., 97, n. 1 (1999), pp. 155-169. Zbl0985.14009MR1682272
  9. [9] D. COX - J. LITTLE - D. O’SHEA, Ideals, varieties and algorithms, UTM Springer. Second edition (1996). Zbl0861.13012
  10. [10] P. DELIGNE, La conjecture de Weil. II, Publ. Math. Inst. Hautes Etud. Sci., 52 (1980), pp. 137-252. Zbl0456.14014MR601520
  11. [11] M. GROS - L. NARVÁEZ-MACARRO, Cohomologie évanescente p-adique: calculs locaux, Rend. Sem. Mat. Univ. Padova, 104 (2000), pp. 71-90. Zbl1167.14309MR1809351
  12. [12] C. HUYGHE, Un théorème de comparaison entre les faisceaux d’opérateurs différentiels de Berthelot et de Mebkhout-Narvaez-Macarro, J. Algebraic Geometry, 12 (2003), pp. 147-199. Zbl1053.14015MR1948688
  13. [13] O. HYODO, On the de Rham-Witt complex attached to a semi-stable family, Compos. Math., 78, n. 3 (1991), pp. 241-260. Zbl0742.14015MR1106296
  14. [14] O. HYODO - K. KATO, Semi-stable reduction and crystalline cohomology with logarithmic poles, Périodes p-adiques, Astérisque, 223 (1994), pp. 221-268. Zbl0852.14004MR1293974
  15. [15] K. KATO, Crystals with log poles and limit Hodge structures in the positive and mixed characteristics, Notes manuscrites (1988). 
  16. [16] P. MAISONOBE - Z. MEBKHOUT, Le théorème de comparaison pour les cycles évanescents, Proceedings du CIMPE, A paraitre. 
  17. [17] B. MALGRANGE, Polynômes de Bernstein-Sato et cohomologie évanescente, Astérisque, 101-102 (1983), pp. 243-267. Zbl0528.32007MR737934
  18. [18] Z. MEBKHOUT - L. NARVÁEZ-MACARRO, Sur les coefficients de De RhamGrothendieck des variétés algébriques, Lecture Notes in Maths, 1454 (1990), pp. 267-308. Zbl0727.14011MR1094858
  19. [19] A. MOKRANE, La suite spectrale des poids en cohomologie de Hyodo-Kato, Duke Math. J., 72 (1993), pp. 301-337. Zbl0834.14010MR1248675
  20. [20] L. NARVÁEZ-MACARRO, Division theorem over the Dwork-Monsky-Washnitzer completion of polynomial rings and Weyl algebras, in Rings, Hopf algebras and Brauer groups. Lect. Notes in Pure and Appl. Math. (Marcel Dekker), 197 (1998), pp. 175-191. Zbl0944.13018MR1615789
  21. [21] C. SABBAH, D-modules et cycles évanescents (d’après Malgrange et Kashiwara), Travaux en cours n. 24 (conférence de la Rábida 1984) (1987), pp. 53-98. Zbl0623.32013MR907935
  22. [22] M. SAITO, Modules de Hodge polarisables. Publ. of the RIMS. Kyoto Univ., 24 (1988), pp. 849-995. Zbl0691.14007MR1000123
  23. [23] J. STEENBRINK, Limits of Hodge structures, Inv. Math., 31 (1976), pp. 229-257. Zbl0303.14002MR429885
  24. [24] J. STEENBRINK - S. ZUCKER, Variation of mixed Hodge structure. I, Inv. Math., 80 (1985), pp. 489-542. Zbl0626.14007MR791673
  25. [25] S. ZUCKER, Variation of mixed Hodge structure. II , Inv. Math., 80 (1985), pp. 543-565. Zbl0615.14003MR791674

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.