The Flow Associated to Weakly Differentiable Vector Fields: Recent Results and Open Problems
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 1, page 25-41
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topAmbrosio, Luigi. "The Flow Associated to Weakly Differentiable Vector Fields: Recent Results and Open Problems." Bollettino dell'Unione Matematica Italiana 10-B.1 (2007): 25-41. <http://eudml.org/doc/290397>.
@article{Ambrosio2007,
abstract = {n this note we describe some recent developments of the theory of flows associated to vector fields with a low regularity with respect to the spatial variables, for instance with a Sobolev or BV regularity. After the illustration of some applica- tions of this theory to conservation laws and PDE's in fluid dynamics, we give an axiomatic presentation of the problem, based on a probabilistic approach inspired by the work of L.C. Young. In the final part we discuss very recent results on the regularity of the flow itself with respect to the spatial variables.},
author = {Ambrosio, Luigi},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {25-41},
publisher = {Unione Matematica Italiana},
title = {The Flow Associated to Weakly Differentiable Vector Fields: Recent Results and Open Problems},
url = {http://eudml.org/doc/290397},
volume = {10-B},
year = {2007},
}
TY - JOUR
AU - Ambrosio, Luigi
TI - The Flow Associated to Weakly Differentiable Vector Fields: Recent Results and Open Problems
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/2//
PB - Unione Matematica Italiana
VL - 10-B
IS - 1
SP - 25
EP - 41
AB - n this note we describe some recent developments of the theory of flows associated to vector fields with a low regularity with respect to the spatial variables, for instance with a Sobolev or BV regularity. After the illustration of some applica- tions of this theory to conservation laws and PDE's in fluid dynamics, we give an axiomatic presentation of the problem, based on a probabilistic approach inspired by the work of L.C. Young. In the final part we discuss very recent results on the regularity of the flow itself with respect to the spatial variables.
LA - eng
UR - http://eudml.org/doc/290397
ER -
References
top- AIZENMAN, M., On vector fields as generators of flows: a counterexample to Nelson's conjecture, Ann. Math., 107 (1978), 287-296. Zbl0394.28012MR482853
- ALBERTI, G., Rank-one properties for derivatives of functions with bounded variation, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 239-274. Zbl0791.26008MR1215412DOI10.1017/S030821050002566X
- ALBERTI, G. - AMBROSIO, L., A geometric approach to monotone functions in , Math. Z., 230 (1999), 259-316. Zbl0934.49025MR1676726DOI10.1007/PL00004691
- ALBERTI, G. - MÜLLER, S., A new approach to variational problems with multiple scales, Comm. Pure Appl. Math., 54 (2001), 761-825. Zbl1021.49012MR1823420DOI10.1002/cpa.1013
- ALMGREN, F. J., The theory of varifolds - A variational calculus in the large, Princeton University Press, 1972.
- AMBROSIO, L. - FUSCO, N. - PALLARA, D., Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, 2000. Zbl0957.49001MR1857292
- AMBROSIO, L., Transport equation and Cauchy problem for BV vector fields, Inventiones Mathematicae, 158 (2004), 227-260. Zbl1075.35087MR2096794DOI10.1007/s00222-004-0367-2
- AMBROSIO, L. - DE LELLIS, C., Existence of solutions for a class of hyperbolic systems of conservation laws in several space dimensions, International Mathematical Research Notices, 41 (2003), 2205-2220. Zbl1061.35048MR2000967DOI10.1155/S1073792803131327
- AMBROSIO, L. - DE LELLIS, C., A note on admissible solutions of 1d scalar conservation laws and 2d Hamilton-Jacobi equations, Journal of Hyperbolic Differential Equations, 1 (4) (2004), 813-826. Zbl1071.35032MR2111584DOI10.1142/S0219891604000263
- AMBROSIO, L., Lecture notes on transport equation and Cauchy problem for BV vector fields and applications, Preprint, 2004 (available at http://cvgmt.sns.it). MR2096794DOI10.1007/s00222-004-0367-2
- AMBROSIO, L., Lecture notes on transport equation and Cauchy problem for non-smooth vector fields and applications, Preprint, 2005 (available at http://cvgmt.sns.it). MR2408257DOI10.1007/978-3-540-75914-0_1
- AMBROSIO, L. - CRIPPA, G., Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields, Preprint, 2006 (available at http://cvgmt.sns.it). MR2409676DOI10.1007/978-3-540-76781-7_1
- AMBROSIO, L. - BOUCHUT, F. - DE LELLIS, C., Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions, Comm. PDE, 29 (2004), 1635-1651. Zbl1072.35116MR2103848DOI10.1081/PDE-200040210
- AMBROSIO, L. - CRIPPA, G. - MANIGLIA, S., Traces and fine properties of a BD class of vector fields and applications, Ann. Sci. Toulouse, XIV (4) (2005), 527-561. Zbl1091.35007MR2188582
- AMBROSIO, L. - GIGLI, N. - SAVARÉ, G., Gradient flows in metric spaces and in the Wasserstein space of probability measures, Lectures in Mathematics, ETH Zurich, Birkhäuser, 2005. MR2129498
- AMBROSIO, L. - LECUMBERRY, M. - MANIGLIA, S., Lipschitz regularity and approx- imate differentiability of the DiPerna-Lions flow. Rendiconti del Seminario Fisico Matematico di Padova, 114 (2005), 29-50. Zbl1370.26014MR2207860
- AMBROSIO, L. - MALÝ, J., Very weak notions of differentiability, Preprint, 2005 (available at http://cvgmt.sns.it). MR2332676DOI10.1017/S0308210505001344
- AMBROSIO, L. - DE LELLIS, C. - MALÝ, J., On the chain rule for the divergence of BV like vector fields: applications, partial results, open problems, Preprint, 2005 (available at http://cvgmt. sns.it). MR2373724DOI10.1090/conm/446/08625
- AMBROSIO, L. - LISINI, S. - SAVARÉ, G., Stability of flows associated to gradient vector fields and convergence of iterated transport maps, Preprint, 2005 (available at http://cvgmt.sns.it). MR2258529DOI10.1007/s00229-006-0003-0
- BALDER, E. J., New fundamentals of Young measure convergence, CRC Res. Notes in Math.411, 2001. Zbl0964.49011MR1713855
- BANGERT, V., Minimal measures and minimizing closed normal one-currents, Geom. funct. anal., 9 (1999), 413-427. Zbl0973.58004MR1708452DOI10.1007/s000390050093
- BALL, J. - JAMES, R., Fine phase mixtures as minimizers of energy, Arch. Rat. Mech. Anal., 100 (1987), 13-52. Zbl0629.49020MR906132DOI10.1007/BF00281246
- BENAMOU, J.-D. - BRENIER, Y., Weak solutions for the semigeostrophic equation formulated as a couples Monge-Ampere transport problem, SIAM J. Appl. Math., 58 (1998), 1450-1461. Zbl0915.35024MR1627555DOI10.1137/S0036139995294111
- BERNARD, P. - BUFFONI, B., Optimal mass transportation and Mather theory, Preprint, 2004. MR2283105DOI10.4171/JEMS/74
- BERNOT, M. - CASELLES, V. - MOREL, J. M., Traffic plans, Preprint, 2004. MR2177636DOI10.5565/PUBLMAT_49205_09
- BOGACHEV, V. - WOLF, E. M., Absolutely continuous flows generated by Sobolev class vector fields in finite and infinite dimensions, J. Funct. Anal., 167 (1999), 1-68. Zbl0956.60079MR1710649DOI10.1006/jfan.1999.3430
- BRENIER, Y., The least action principle and the related concept of generalized flows for incompressible perfect fluids, J. Amer. Mat. Soc., 2 (1989), 225-255. Zbl0697.76030MR969419DOI10.2307/1990977
- BRENIER, Y., The dual least action problem for an ideal, incompressible fluid, Arch. Rational Mech. Anal., 122 (1993), 323-351. Zbl0797.76006MR1217592DOI10.1007/BF00375139
- BRENIER, Y., A homogenized model for vortex sheets, Arch. Rational Mech. Anal., 138 (1997), 319-353. Zbl0962.35140MR1467558DOI10.1007/s002050050044
- BRENIER, Y., Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations, Comm. Pure Appl. Math., 52 (1999), 411-452. Zbl0910.35098MR1658919DOI10.1002/(SICI)1097-0312(199904)52:4<411::AID-CPA1>3.0.CO;2-3
- BOUCHUT, F. - JAMES, F., One dimensional transport equation with discontinuous coefficients, Nonlinear Analysis, 32 (1998), 891-933. Zbl0989.35130MR1618393DOI10.1016/S0362-546X(97)00536-1
- BOUCHUT, F. - GOLSE, F. - PULVIRENTI, M., Kinetic equations and asymptotic theory, Series in Appl. Math., Gauthiers-Villars, 2000. Zbl0979.82048MR2065070
- BOUCHUT, F., Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Rational Mech. Anal., 157 (2001), 75-90. Zbl0979.35032MR1822415DOI10.1007/PL00004237
- BOUCHUT, F. - JAMES, F. - MANCINI, S., Uniqueness and weak stability for multi- dimensional transport equations with one-sided Lipschitz coefficients, Annali Scuola Normale Superiore, Ser. 5, 4 (2005), 1-25. Zbl1170.35363MR2165401
- BOUCHUT, F. - CRIPPA, G., On the relations between uniqueness for the Cauchy problem and existence of smooth approximations for linear transport equations, Preprint, 2006 (available at http://cvgmt.sns.it). Zbl1122.35104MR2274485DOI10.1137/06065249X
- BRESSAN, A., An ill posed Cauchy problem for a hyperbolic system in two space dimensions, Rend. Sem. Mat. Univ. Padova, 110 (2003), 103-117. Zbl1114.35123MR2033003
- BREZIS, H., Analyse fonctionnelle. Théorie et applications, Masson, Paris, 1983. MR697382
- CAFFARELLI, L. A., Some regularity properties of solutions of Monge Ampére equation, Comm. Pure Appl. Math., 44 (1991), 965-969. Zbl0761.35028MR1127042DOI10.1002/cpa.3160440809
- CAFFARELLI, L. A., Boundary regularity of maps with convex potentials, Comm. Pure Appl. Math., 45 (1992), 1141-1151. Zbl0778.35015MR1177479DOI10.1002/cpa.3160450905
- CAFFARELLI, L. A., The regularity of mappings with a convex potential, J. Amer. Math. Soc., 5 (1992), 99-104. Zbl0753.35031MR1124980DOI10.2307/2152752
- CAFFARELLI, L. A., Boundary regularity of maps with convex potentials, Ann. of Math., 144 (1996), 453-496. Zbl0916.35016MR1426885DOI10.2307/2118564
- CAPUZZO DOLCETTA, I. - PERTHAME, B., On some analogy between different ap- proaches to first order PDE's with nonsmooth coefficients, Adv. Math. Sci Appl., 6 (1996), 689-703. Zbl0865.35032MR1411988
- CELLINA, A., On uniqueness almost everywhere for monotonic differential inclusions, Nonlinear Analysis, TMA, 25 (1995), 899-903. Zbl0837.34023MR1350714DOI10.1016/0362-546X(95)00086-B
- CELLINA, A. - VORNICESCU, M., On gradient flows, Journal of Differential Equations, 145 (1998), 489-501. Zbl0927.37007MR1620979DOI10.1006/jdeq.1997.3376
- COLOMBINI, F. - CRIPPA, G. - RAUCH, J., A note on two dimensional transport with bounded divergence, Accepted by Comm. Partial Differential Equations, 2005. MR2254607DOI10.1080/03605300500455933
- COLOMBINI, F. - LERNER, N., Uniqueness of continuous solutions for BV vector fields, Duke Math. J., 111 (2002), 357-384. Zbl1017.35029MR1882138DOI10.1215/S0012-7094-01-11126-5
- COLOMBINI, F. - LERNER, N., Uniqueness of solutions for a class of conormal BV vector fields, Contemp. Math.368 (2005), 133-156. Zbl1064.35033MR2126467DOI10.1090/conm/368/06776
- COLOMBINI, F. - LUO, T. - RAUCH, J., Neraly Lipschitzean diverge free transport propagates neither continuity nor BV regularity, Commun. Math. Sci., 2 (2004), 207- 212. Zbl1088.35015MR2119938
- CRIPPA, G. - DE LELLIS, C., Oscillatory solutions to transport equations, Preprint, 2005 (available at http://cvgmt.sns.it). Zbl1098.35101MR2207545DOI10.1512/iumj.2006.55.2793
- CRIPPA, G. - DE LELLIS, C., Estimates for transport equations and regularity of the DiPerna-Lions flow, Preprint, 2006. Zbl1144.35365MR2369485DOI10.1515/CRELLE.2008.016
- CRUZEIRO, A. B., Équations différentielles ordinaires: non explosion et mesures quasi-invariantes, J. Funct. Anal., 54 (1983), 193-205. Zbl0523.28020MR724704DOI10.1016/0022-1236(83)90054-X
- CRUZEIRO, A. B., Équations différentielles sur l'espace de Wiener et formules de Cameron-Martin non linéaires, J. Funct. Anal., 54 (1983), 206-227. Zbl0524.47028MR724705DOI10.1016/0022-1236(83)90055-1
- CRUZEIRO, A. B., Unicité de solutions d'équations différentielles sur l'espace de Wiener, J. Funct. Anal., 58 (1984), 335-347. Zbl0551.47019MR759104DOI10.1016/0022-1236(84)90047-8
- CULLEN, M., On the accuracy of the semi-geostrophic approximation, Quart. J. Roy. Metereol. Soc., 126 (2000), 1099-1115.
- CULLEN, M. - GANGBO, W., A variational approach for the 2-dimensional semi- geostrophic shallow water equations, Arch. Rational Mech. Anal., 156 (2001), 241-273. Zbl0985.76008MR1816477DOI10.1007/s002050000124
- CULLEN, M. - FELDMAN, M., Lagrangian solutions of semigeostrophic equations in physical space, Preprint, 2003. Zbl1097.35004MR2215268DOI10.1137/040615444
- DAFERMOS, C., Hyperbolic conservation laws in continuum physics, Springer Verlag, 2000. Zbl0940.35002MR1763936DOI10.1007/3-540-29089-3_14
- DE LELLIS, C., Blow-up of the BV norm in the multidimensional Keyfitz and Kranzer system, Duke Math. J., 127 (2004), 313-339. Zbl1074.35073MR2130415DOI10.1215/S0012-7094-04-12724-1
- DE PASCALE, L. - GELLI, M. S. - GRANIERI, L., Minimal measures, one-dimensional currents and the Monge-Kantorovich problem, Preprint, 2004 (available at http://cvgmt.sns.it). Zbl1096.37033MR2241304DOI10.1007/s00526-006-0017-1
- DEPAUW, N., Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d'un hyperplan, C. R. Math. Sci. Acad. Paris, 337 (2003), 249-252. Zbl1024.35029MR2009116DOI10.1016/S1631-073X(03)00330-3
- DE BRUIJN, N. G., On almost additive functions, Colloq. Math.15 (1966), 59-63. Zbl0147.12602MR196026DOI10.4064/cm-15-1-59-63
- DIPERNA, R. J., Measure-valued solutions to conservation laws. Arch. Rational Mech. Anal., 88 (1985), 223-270. Zbl0616.35055MR775191DOI10.1007/BF00752112
- DI PERNA, R. J. - LIONS, P. L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547. Zbl0696.34049MR1022305DOI10.1007/BF01393835
- DI PERNA, R. J. - LIONS, P. L., On the Cauchy problem for the Boltzmann equation: global existence and weak stability, Ann. of Math., 130 (1989), 312-366. MR1014927DOI10.2307/1971423
- EVANS, L. C. - GARIEPY, R. F., Lecture notes on measure theory and fine properties of functions, CRC Press, 1992. Zbl0804.28001MR1158660
- EVANS, L. C., Partial Differential Equations, Graduate studies in Mathematics, 19 (1998), American Mathematical Society. MR1625845
- EVANS, L. C., Partial Differential Equations and Monge-Kantorovich Mass Transfer, Current Developments in Mathematics, 1997, 65-126. Zbl0954.35011MR1698853
- EVANS, L. C. - GANGBO, W., Differential equations methods for the Monge-Kantorovich mass transfer problem, Memoirs AMS, 653, 1999. Zbl0920.49004MR1464149DOI10.1090/memo/0653
- EVANS, L. C. - GANGBO, W. - SAVIN, O., Nonlinear heat flows and diffeomorphisms, Preprint, 2004. Zbl1096.35061MR2191774DOI10.1137/04061386X
- FEDERER, H., Geometric measure theory, Springer, 1969. Zbl0176.00801MR257325
- FIGALLI, A., Existence and uniqueness of martingale solutions for SDE with rough or degenerate coefficients, Preprint, 2006, available at http://cvgmt.sns.it. MR2375067DOI10.1016/j.jfa.2007.09.020
- HAURAY, M., On Liouville transport equation with potential in , Comm. in PDE, 29 (2004), 207-217. Zbl1103.35003MR2038150DOI10.1081/PDE-120028850
- HAURAY, M., On two-dimensional Hamiltonian transport equations with coefficients, Ann. IHP Nonlinear Anal. Non Linéaire, 20 (2003), 625-644. Zbl1028.35148MR1981402DOI10.1016/S0294-1449(02)00015-X
- JURKAT, W. B., On Cauchy's functional equation, Proc. Amer. Math. Soc., 16 (1965), 683-686. Zbl0133.37702MR179496DOI10.2307/2033904
- KEYFITZ, B. L. - KRANZER, H. C., A system of nonstrictly hyperbolic conservation laws arising in elasticity theory, Arch. Rational Mech. Anal.1980, 72, 219-241. Zbl0434.73019MR549642DOI10.1007/BF00281590
- LE BRIS, C. - LIONS, P. L., Renormalized solutions of some transport equations with partially W 1Y1 velocities and applications, Annali di Matematica, 183 (2004), 97-130. Zbl1170.35364MR2044334DOI10.1007/s10231-003-0082-4
- LERNER, N., Transport equations with partially BV velocities, Preprint, 2004. Zbl1170.35362MR2124585
- LIONS, P. L., Sur les équations différentielles ordinaires et les équations de transport, C. R. Acad. Sci. Paris Sér. I, 326 (1998), 833-838. MR1648524DOI10.1016/S0764-4442(98)80022-0
- LIONS, P. L., Mathematical topics in fluid mechanics, Vol. I: incompressible models, Oxford Lecture Series in Mathematics and its applications, 3 (1996), Oxford University Press. Zbl0866.76002MR1422251
- LIONS, P. L., Mathematical topics in fluid mechanics, Vol. II: compressible models, Oxford Lecture Series in Mathematics and its applications, 10 (1998), Oxford University Press. Zbl0908.76004MR1422251
- LOTT, J. - VILLANI, C., Weak curvature conditions and Poincaré inequalities, Preprint, 2005. MR2311627DOI10.1016/j.jfa.2006.10.018
- MANIGLIA, S., Probabilistic representation and uniqueness results for measure-valued solutions of transport equations, Preprint, 2005. Zbl1123.60048MR2335089DOI10.1016/j.matpur.2007.04.001
- MATHER, J. N., Minimal measures, Comment. Math. Helv., 64 (1989), 375-394. MR998855DOI10.1007/BF02564683
- MATHER, J. N., Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., 207 (1991), 169-207. Zbl0696.58027MR1109661DOI10.1007/BF02571383
- PANOV, E. Y., On strong precompactness of bounded sets of measure-valued solutions of a first order quasilinear equation, Math. Sb., 186 (1995), 729-740. Zbl0839.35139MR1341087DOI10.1070/SM1995v186n05ABEH000039
- PETROVA, G. - POPOV, B., Linear transport equation with discontinuous coefficients, Comm. PDE, 24 (1999), 1849-1873. Zbl0992.35104MR1708110DOI10.1080/03605309908821484
- POUPAUD, F. - RASCLE, M., Measure solutions to the liner multidimensional transport equation with non-smooth coefficients, Comm. PDE, 22 (1997), 337-358. Zbl0882.35026MR1434148DOI10.1080/03605309708821265
- PRATELLI, A., Equivalence between some definitions for the optimal transport problem and for the transport density on manifolds, preprint, 2003, to appear on Ann. Mat. Pura Appl (available at http://cvgmt.sns.it). MR2149093DOI10.1007/s10231-004-0109-5
- SMIRNOV, S. K., Decomposition of solenoidal vector charges into elementary solenoids and the structure of normal one-dimensional currents, St. Petersburg Math. J., 5 (1994), 841-867. MR1246427
- STEIN, E. M., Singular integrals and differentiability properties of functions, Princeton University Press, 1970. Zbl0207.13501MR290095
- TARTAR, L., Compensated compactness and applications to partial differential equations, Research Notes in Mathematics, Nonlinear Analysis and Mechanics, ed. R. J. Knops, vol. 4, Pitman Press, New York, 1979, 136-211. Zbl0437.35004MR584398
- TEMAM, R., Problémes mathématiques en plasticité, Gauthier-Villars, Paris, 1983. Zbl0547.73026MR711964
- URBAS, J. I. E., Global Hölder estimates for equations of Monge-Ampère type, Invent. Math., 91 (1988), 1-29. MR918234DOI10.1007/BF01404910
- URBAS, J. I. E., Regularity of generalized solutions of Monge-Ampère equations, Math. Z., 197 (1988), 365-393. Zbl0617.35017MR926846DOI10.1007/BF01418336
- VASSEUR, A., Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., 160 (2001), 181-193. Zbl0999.35018MR1869441DOI10.1007/s002050100157
- VILLANI, C., Topics in mass transportation, Graduate Studies in Mathematics, 58 (2004), American Mathematical Society.
- VILLANI, C., Optimal transport: old and new, Lecture Notes of the 2005 Saint-Flour Summer school.
- YOUNG, L. C., Lectures on the calculus of variations and optimal control theory, Saunders, 1969. Zbl0177.37801MR259704
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.