The Ordinary Differential Equation with non-Lipschitz Vector Fields

Gianluca Crippa

Bollettino dell'Unione Matematica Italiana (2008)

  • Volume: 1, Issue: 2, page 333-348
  • ISSN: 0392-4041

Abstract

top
In this note we survey some recent results on the well-posedness of the ordinary differential equation with non-Lipschitz vector fields. We introduce the notion of regular Lagrangian flow, which is the right concept of solution in this framework. We present two different approaches to the theory of regular Lagrangian flows. The first one is quite general and is based on the connection with the continuity equation, via the superposition principle. The second one exploits some quantitative a-priori estimates and provides stronger results in the case of Sobolev regularity of the vector field.

How to cite

top

Crippa, Gianluca. "The Ordinary Differential Equation with non-Lipschitz Vector Fields." Bollettino dell'Unione Matematica Italiana 1.2 (2008): 333-348. <http://eudml.org/doc/290485>.

@article{Crippa2008,
abstract = {In this note we survey some recent results on the well-posedness of the ordinary differential equation with non-Lipschitz vector fields. We introduce the notion of regular Lagrangian flow, which is the right concept of solution in this framework. We present two different approaches to the theory of regular Lagrangian flows. The first one is quite general and is based on the connection with the continuity equation, via the superposition principle. The second one exploits some quantitative a-priori estimates and provides stronger results in the case of Sobolev regularity of the vector field.},
author = {Crippa, Gianluca},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {333-348},
publisher = {Unione Matematica Italiana},
title = {The Ordinary Differential Equation with non-Lipschitz Vector Fields},
url = {http://eudml.org/doc/290485},
volume = {1},
year = {2008},
}

TY - JOUR
AU - Crippa, Gianluca
TI - The Ordinary Differential Equation with non-Lipschitz Vector Fields
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/6//
PB - Unione Matematica Italiana
VL - 1
IS - 2
SP - 333
EP - 348
AB - In this note we survey some recent results on the well-posedness of the ordinary differential equation with non-Lipschitz vector fields. We introduce the notion of regular Lagrangian flow, which is the right concept of solution in this framework. We present two different approaches to the theory of regular Lagrangian flows. The first one is quite general and is based on the connection with the continuity equation, via the superposition principle. The second one exploits some quantitative a-priori estimates and provides stronger results in the case of Sobolev regularity of the vector field.
LA - eng
UR - http://eudml.org/doc/290485
ER -

References

top
  1. AMBROSIO, L., Transport equation and Cauchy problem for BV vector fields. Invent. Math., 158 (2004), 227-260. Zbl1075.35087MR2096794DOI10.1007/s00222-004-0367-2
  2. AMBROSIO, L., Transport equation and Cauchy problem for non-smooth vector fields. Lecture Notes in Mathematics``Calculus of Variations and Non-Linear Partial Differential Equation'' (CIME Series, Cetraro, 2005)1927, B. Dacorogna and P. Marcellini eds., 2-41, 2008. MR2408257DOI10.1007/978-3-540-75914-0_1
  3. AMBROSIO, L. - BOUCHUT, F. - DE LELLIS, C., Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions. Comm. PDE, 29 (2004), 1635-1651. Zbl1072.35116MR2103848DOI10.1081/PDE-200040210
  4. AMBROSIO, L. - CRIPPA, G., Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields. To appear in the series UMI Lecture Notes (available at http://cvgmt.sns.it). MR2409676DOI10.1007/978-3-540-76781-7_1
  5. AMBROSIO, L. - CRIPPA, G. - MANIGLIA, S., Traces and fine properties of a BD class of vector fields and applications. Ann. Sci. Toulouse, XIV (4) (2005), 527-561. Zbl1091.35007MR2188582
  6. AMBROSIO, L. - DE LELLIS, C., Existence of solutions for a class of hyperbolic systems of conservation laws in several space dimensions. International Mathematical Research Notices, 41 (2003), 2205-2220. Zbl1061.35048MR2000967DOI10.1155/S1073792803131327
  7. AMBROSIO, L. - DE LELLIS, C. - MALI, J., On the chain-rule for the divergence of BV like vector fields: applications, partial results, open problems. To appear in the forthcoming book by the AMS series in contemporary mathematics "Perspectives in Nonlinear Partial Differential Equations: in honor of Haim Brezis" (available at http://cvgmt.sns.it). MR2373724DOI10.1090/conm/446/08625
  8. AMBROSIO, L. - FUSCO, N. - PALLARA, D., Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, 2000. Zbl0957.49001MR1857292
  9. AMBROSIO, L. - GIGLI, N. - SAVARÉ, G., Gradient flows in metric spaces and in the Wasserstein space of probability measures. Lectures in Mathematics, ETH Zurich, Birkhäuser, 2005. MR2129498
  10. AMBROSIO, L. - LECUMBERRY, M. - MANIGLIA, S., Lipschitz regularity and approximate differentiability of the DiPerna-Lions flow. Rend. Sem. Mat. Univ. Padova, 114 (2005), 29-50. Zbl1370.26014MR2207860
  11. AMBROSIO, L. - MALI, J., Very weak notions of differentiability. Proceedings of the Royal Society of Edinburgh, 137A (2007), 447-455. Zbl1167.26001MR2332676DOI10.1017/S0308210505001344
  12. BOUCHUT, F., Renormalized solutions to the Vlasov equation with coefficients of bounded variation. Arch. Rational Mech. Anal., 157 (2001), 75-90. Zbl0979.35032MR1822415DOI10.1007/PL00004237
  13. BOUCHUT, F. - CRIPPA, G., Uniqueness, Renormalization, and Smooth Approximations for Linear Transport Equations. SIAM J. Math. Anal., 38 (2006), 1316- 1328. Zbl1122.35104MR2274485DOI10.1137/06065249X
  14. BRESSAN, A., A lemma and a conjecture on the cost of rearrangements. Rend. Sem. Mat. Univ. Padova, 110 (2003), 97-102. Zbl1114.05002MR2033002
  15. BRESSAN, A., An ill posed Cauchy problem for a hyperbolic system in two space dimensions. Rend. Sem. Mat. Univ. Padova, 110 (2003), 103-117. Zbl1114.35123MR2033003
  16. COLOMBINI, F. - CRIPPA, G. - RAUCH, J., A note on two-dimensional transport with bounded divergence. Comm. PDE, 31 (2006), 1109-1115. Zbl1122.35143MR2254607DOI10.1080/03605300500455933
  17. COLOMBINI, F. - LERNER, N., Uniqueness of L solutions for a class of conormal BV vector fields. Contemp. Math.368 (2005), 133-156. Zbl1064.35033MR2126467DOI10.1090/conm/368/06776
  18. CRIPPA, G., Equazione del trasporto e problema di Cauchy per campi vettoriali debolmente differenziabili. Tesi di Laurea, Università di Pisa, 2006 (available at http://cvgmt.sns.it). 
  19. CRIPPA, G., The flow associated to weakly differentiable vector fields. PhD Thesis, Scuola Normale Superiore and Universitat Zurich, 2007 (available at http:// cvgmt.sns.it). Zbl1178.35134MR2512801
  20. CRIPPA, G. - DE LELLIS, C., Oscillatory solutions to transport equations. Indiana Univ. Math. J., 55 (2006), 1-13. Zbl1098.35101MR2207545DOI10.1512/iumj.2006.55.2793
  21. CRIPPA, G. - DE LELLIS, C., Estimates and regularity results for the DiPerna-Lions flow. Preprint, 2006 (available at http://cvgmt.sns.it). J. Reine Angew. Math., in press. Zbl1160.34004MR2369485DOI10.1515/CRELLE.2008.016
  22. CRIPPA, G. - DE LELLIS, C., Regularity and compactness for the DiPerna-Lions flow. Hyperbolic Problems: Theory, Numerics, Applications. S. Benzoni-Gavage and D. Serre eds. (2008). Zbl1144.35365MR2549174DOI10.1007/978-3-540-75712-2_39
  23. DE LELLIS, C., Notes on hyperbolic systems of conservation laws and transport equations. Handbook of Differential Equations: Evolutionary Equations, vol. III. Edited by C. M. Dafermos and E. Feireisl. Elsevier/North-Holland, Amsterdam, 2006. MR2549371DOI10.1016/S1874-5717(07)80007-7
  24. DE LELLIS, C., Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio (d'après Ambrosio, DiPerna, Lions). Séminaire Bourbaki, vol. 2006/2007, n. 972. Zbl1169.35060MR2487734
  25. DEPAUW, N., Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d'un hyperplan. C.R. Math. Sci. Acad. Paris, 337 (2003), 249-252. Zbl1024.35029MR2009116DOI10.1016/S1631-073X(03)00330-3
  26. DIPERNA, R. J. - LIONS, P.-L., Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 98 (1989), 511-547. Zbl0696.34049MR1022305DOI10.1007/BF01393835
  27. DIPERNA, R. J. - LIONS, P.-L., On the Cauchy problem for the Boltzmann equation: global existence and weak stability. Ann. of Math., 130 (1989), 312-366. Zbl0698.45010MR1014927DOI10.2307/1971423
  28. KEYFITZ, B. L. - KRANZER, H. C., A system of nonstrictly hyperbolic conservation laws arising in elasticity theory. Arch. Rational Mech. Anal., 72 (1980), 219-241. Zbl0434.73019MR549642DOI10.1007/BF00281590
  29. KRUZKOV, S. N., First order quasilinear equations with several independent variables. Mat. Sb. (N.S.), 81 (1970), 228-255. MR267257
  30. LE BRIS, C. - LIONS, P.-L., Renormalized solutions of some transport equations with partially W 1 , 1 velocities and applications. Annali di Matematica, 183 (2003), 97-130. Zbl1170.35364MR2044334DOI10.1007/s10231-003-0082-4
  31. STEIN, E. M., Singular integrals and differentiability properties of functions. Princeton University Press, 1970. Zbl0207.13501MR290095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.