On the ternary Goldbach problem with primes in arithmetic progressions having a common modulus
- [1] Albert-Ludwigs-Universität Freiburg Eckerstr. 1 D-79104 Freiburg, Allemagne
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 1, page 203-213
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topHalupczok, Karin. "On the ternary Goldbach problem with primes in arithmetic progressions having a common modulus." Journal de Théorie des Nombres de Bordeaux 21.1 (2009): 203-213. <http://eudml.org/doc/10872>.
@article{Halupczok2009,
abstract = {For $\varepsilon >0$ and any sufficiently large odd $n$ we show that for almost all $k\le R:=n^\{1/5-\varepsilon \}$ there exists a representation $n=p_\{1\}+p_\{2\}+p_\{3\}$ with primes $p_\{i\}\equiv b_\{i\}$ mod $k$ for almost all admissible triplets $b_\{1\},b_\{2\},b_\{3\}$ of reduced residues mod $k$.},
affiliation = {Albert-Ludwigs-Universität Freiburg Eckerstr. 1 D-79104 Freiburg, Allemagne},
author = {Halupczok, Karin},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {ternary Goldbach problem; primes in progression},
language = {eng},
number = {1},
pages = {203-213},
publisher = {Université Bordeaux 1},
title = {On the ternary Goldbach problem with primes in arithmetic progressions having a common modulus},
url = {http://eudml.org/doc/10872},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Halupczok, Karin
TI - On the ternary Goldbach problem with primes in arithmetic progressions having a common modulus
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 1
SP - 203
EP - 213
AB - For $\varepsilon >0$ and any sufficiently large odd $n$ we show that for almost all $k\le R:=n^{1/5-\varepsilon }$ there exists a representation $n=p_{1}+p_{2}+p_{3}$ with primes $p_{i}\equiv b_{i}$ mod $k$ for almost all admissible triplets $b_{1},b_{2},b_{3}$ of reduced residues mod $k$.
LA - eng
KW - ternary Goldbach problem; primes in progression
UR - http://eudml.org/doc/10872
ER -
References
top- A. Balog, The Prime -Tuplets Conjecture on Average. Analytic number theory, Proc. Conf. in Honor of Paul T. Bateman, Urbana/IL (USA), 1989, Prog. Math. 85 (1990), 47–75. Zbl0719.11066MR1084173
- C. Bauer, Y. Wang, On the Goldbach conjecture in arithmetic progressions. Rocky Mountain J. Math. 36 (1) (2006), 35–66. Zbl1148.11053MR2228183
- Z. Cui, The ternary Goldbach problem in arithmetic progression II. Acta Math. Sinica (Chin. Ser.) 49 (1) (2006), 129–138. Zbl1230.11122MR2248920
- J. Liu, T. Zhang, The ternary Goldbach problem in arithmetic progressions. Acta Arith. 82 (3) (1997), 197–227. Zbl0889.11035MR1482887
- M. B. Nathanson, Additive Number Theory: The Classical Bases. Graduate texts in Mathematics 164, Springer-Verlag, 1996. Zbl0859.11002MR1395371
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.