On the number of representations in the Waring-Goldbach problem with a prime variable in an arithmetic progression
- [1] Dipartimento di Matematica e Appl.“R. Caccioppoli” Università degli Studi di Napoli “Federico II” Via Cinthia, 80126 Napoli, Italy
Journal de Théorie des Nombres de Bordeaux (2012)
- Volume: 24, Issue: 2, page 355-368
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLaporta, Maurizio. "On the number of representations in the Waring-Goldbach problem with a prime variable in an arithmetic progression." Journal de Théorie des Nombres de Bordeaux 24.2 (2012): 355-368. <http://eudml.org/doc/251079>.
@article{Laporta2012,
abstract = {We prove a Bombieri-Vinogradov type theorem for the number of representations of an integer $N$ in the form $N=p_1^\{g\}+p_2^\{g\}+\ldots +p_s^\{g\}$ with $p_1,p_2,\ldots , p_s$ prime numbers such that $p_1\equiv l\; (\{\rm mod\}\; k)$, under suitable hypothesis on $s = s(g)$ for every integer $g\ge 2$.},
affiliation = {Dipartimento di Matematica e Appl.“R. Caccioppoli” Università degli Studi di Napoli “Federico II” Via Cinthia, 80126 Napoli, Italy},
author = {Laporta, Maurizio},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Waring-Goldbach problem; circle method; prime},
language = {eng},
month = {6},
number = {2},
pages = {355-368},
publisher = {Société Arithmétique de Bordeaux},
title = {On the number of representations in the Waring-Goldbach problem with a prime variable in an arithmetic progression},
url = {http://eudml.org/doc/251079},
volume = {24},
year = {2012},
}
TY - JOUR
AU - Laporta, Maurizio
TI - On the number of representations in the Waring-Goldbach problem with a prime variable in an arithmetic progression
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/6//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 2
SP - 355
EP - 368
AB - We prove a Bombieri-Vinogradov type theorem for the number of representations of an integer $N$ in the form $N=p_1^{g}+p_2^{g}+\ldots +p_s^{g}$ with $p_1,p_2,\ldots , p_s$ prime numbers such that $p_1\equiv l\; ({\rm mod}\; k)$, under suitable hypothesis on $s = s(g)$ for every integer $g\ge 2$.
LA - eng
KW - Waring-Goldbach problem; circle method; prime
UR - http://eudml.org/doc/251079
ER -
References
top- R. Ayoub, On Rademacher’s extension of the Goldbach-Vinogradov theorem. Trans. Amer. Math. Soc., 74 (1953), 482–491. Zbl0050.27001MR53960
- C. Bauer, Y. Wang, On the Goldbach conjecture in arithmetic progressions. Rocky Mountain J. Math., 36 (1) (2006), 35–66. Zbl1148.11053MR2228183
- C. Bauer, Hua’s theorem on sums of five prime squares in arithmetic progressions. Studia Sci. Math. Hungar. 45 (2008), no. 1, 29–66. Zbl1164.11061MR2401168
- K. Boklan, The asymptotic formula in Waring’s problem. Mathematika, 41 (1994), 329–347. Zbl0815.11050MR1316613
- Z. Cui, The ternary Goldbach problem in arithmetic progression II. Acta Math. Sinica (Chin. Ser.), 49 (1) (2006), 129–138. Zbl1230.11122MR2248920
- K. Ford, New estimates for mean values of Weyl sums. International Math. Research Notices, 3 (1995), 155–171. Zbl0821.11050MR1321702
- K. Halupczok, On the number of representations in the ternary Goldbach problem with one prime number in a given residue class. J. Number Theory 117 no.2 (2006), 292–300. Zbl1099.11058MR2213766
- K. Halupczok, On the ternary Goldbach problem with primes in independent arithmetic progressions. Acta Math. Hungar., 120 (4) (2008), 315–349. Zbl1174.11080MR2452756
- K. Halupczok, On the ternary Goldbach problem with primes in arithmetic progressions having a common modulus. J. Théorie Nombres Bordeaux, 21 (2009), 203–213. Zbl1230.11125MR2537712
- L.-K. Hua, Some results in the additive prime number theory. Quart. J. Math. Oxford 9 (1938), 68–80. Zbl0018.29404
- L.-K. Hua, Additive Theory of Prime Numbers . Providence, Rhode Island: American Math. Soc., 1965. Zbl0192.39304MR194404
- M.B.S. Laporta, D.I. Tolev, On the sum of five squares of primes, one of which belongs to an arithmetic progression. Fundam. Prikl. Mat. (in Russian), 8 (2002), n.1, 85–96. Zbl1027.11077MR1920439
- M.B.S. Laporta, On the Goldbach-Waring problem with primes in arithmetic progressions. Unpublished manuscript. Zbl1315.11087
- J.Y. Liu, T. Zhan, The ternary Goldbach problem in arithmetic progressions. Acta Arith. 82 (1997), 197–227. Zbl0889.11035MR1482887
- J.Y. Liu, T. Zhan, The Goldbach-Vinogradov Theorem. In: Number Theory in Progress, Proceedings of the International Conference on Number Theory (Zakopane, Poland, 1997), (ed. by K. Gyory, H. Iwaniec, J. Urbanowicz), 1005–1023. Walter de Gruyter, Berlin, 1999. Zbl0937.11047MR1689556
- M.C. Liu, T. Zhan, The Goldbach problem with primes in arithmetic progressions. In: Analytic Number Theory (Kyoto, 1996), (ed. by Y.Motohashi; London Math. Soc. Lecture Note Ser. 247), 227–251. Cambridge University Press, Cambridge, 1997. Zbl0913.11043MR1694994
- H.L. Montgomery, A note on the large sieve. J. London Math. Soc. 43 (1968), 93–98. Zbl0254.10043MR224585
- H.L. Montgomery, Topics in Multiplicative Number Theory. Lecture Notes in Mathematics 227, Springer-Verlag, 1971. Zbl0216.03501MR337847
- D.I. Tolev, On the number of representations of an odd integer as a sum of three primes, one of which belongs to an arithmetic progression. Proceedings of the Mathematical Institute “Steklov”, Moskow, 218, 1997. Zbl0911.11048MR1636722
- R.C. Vaughan, The Hardy-Littlewood Method. Cambridge University Press, 2nd ed., 1997. Zbl0868.11046MR1435742
- I.M.Vinogradov, Representation of an odd number as a sum of three primes. Dokl. Akad. Nauk SSSR, 15 (1937), 169–172 (in Russian). Zbl0016.29101
- I.M. Vinogradov, Selected Works. Springer-Verlag, 1985. MR807530
- Y. Wang, Numbers representable by five prime squares with primes in an arithmetic progressions. Acta Arith., 90 (3) (1999), 217–244. Zbl0936.11058MR1715544
- T.D. Wooley, Vinogradov’s mean value theorem via efficient congruencing. Annals of Math., 175 (2012), 1575–1627. Zbl1267.11105
- Z.F. Zhang, T.Z. Wang, The ternary Goldbach problem with primes in arithmetic progression. Acta Math. Sinica (English Ser.), 17 (4) (2001), 679–696. Zbl1011.11062MR1891759
- A. Zulauf, On the number of representations of an integer as a sum of primes belonging to given arithmetical progressions. Compos. Mat., 15 (1961), 64–69. Zbl0099.03103MR137690
- A. Zulauf, Beweis einer Erweiterung des Satzes von Goldbach-Vinogradov. J. Reine. Angew. Math., 190 (1952), 169–198. Zbl0048.27603MR59305
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.