On the number of representations in the Waring-Goldbach problem with a prime variable in an arithmetic progression

Maurizio Laporta[1]

  • [1] Dipartimento di Matematica e Appl.“R. Caccioppoli” Università degli Studi di Napoli “Federico II” Via Cinthia, 80126 Napoli, Italy

Journal de Théorie des Nombres de Bordeaux (2012)

  • Volume: 24, Issue: 2, page 355-368
  • ISSN: 1246-7405

Abstract

top
We prove a Bombieri-Vinogradov type theorem for the number of representations of an integer N in the form N = p 1 g + p 2 g + ... + p s g with p 1 , p 2 , ... , p s prime numbers such that p 1 l ( mod k ) , under suitable hypothesis on s = s ( g ) for every integer g 2 .

How to cite

top

Laporta, Maurizio. "On the number of representations in the Waring-Goldbach problem with a prime variable in an arithmetic progression." Journal de Théorie des Nombres de Bordeaux 24.2 (2012): 355-368. <http://eudml.org/doc/251079>.

@article{Laporta2012,
abstract = {We prove a Bombieri-Vinogradov type theorem for the number of representations of an integer $N$ in the form $N=p_1^\{g\}+p_2^\{g\}+\ldots +p_s^\{g\}$ with $p_1,p_2,\ldots , p_s$ prime numbers such that $p_1\equiv l\; (\{\rm mod\}\; k)$, under suitable hypothesis on $s = s(g)$ for every integer $g\ge 2$.},
affiliation = {Dipartimento di Matematica e Appl.“R. Caccioppoli” Università degli Studi di Napoli “Federico II” Via Cinthia, 80126 Napoli, Italy},
author = {Laporta, Maurizio},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Waring-Goldbach problem; circle method; prime},
language = {eng},
month = {6},
number = {2},
pages = {355-368},
publisher = {Société Arithmétique de Bordeaux},
title = {On the number of representations in the Waring-Goldbach problem with a prime variable in an arithmetic progression},
url = {http://eudml.org/doc/251079},
volume = {24},
year = {2012},
}

TY - JOUR
AU - Laporta, Maurizio
TI - On the number of representations in the Waring-Goldbach problem with a prime variable in an arithmetic progression
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/6//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 2
SP - 355
EP - 368
AB - We prove a Bombieri-Vinogradov type theorem for the number of representations of an integer $N$ in the form $N=p_1^{g}+p_2^{g}+\ldots +p_s^{g}$ with $p_1,p_2,\ldots , p_s$ prime numbers such that $p_1\equiv l\; ({\rm mod}\; k)$, under suitable hypothesis on $s = s(g)$ for every integer $g\ge 2$.
LA - eng
KW - Waring-Goldbach problem; circle method; prime
UR - http://eudml.org/doc/251079
ER -

References

top
  1. R. Ayoub, On Rademacher’s extension of the Goldbach-Vinogradov theorem. Trans. Amer. Math. Soc., 74 (1953), 482–491. Zbl0050.27001MR53960
  2. C. Bauer, Y. Wang, On the Goldbach conjecture in arithmetic progressions. Rocky Mountain J. Math., 36 (1) (2006), 35–66. Zbl1148.11053MR2228183
  3. C. Bauer, Hua’s theorem on sums of five prime squares in arithmetic progressions. Studia Sci. Math. Hungar. 45 (2008), no. 1, 29–66. Zbl1164.11061MR2401168
  4. K. Boklan, The asymptotic formula in Waring’s problem. Mathematika, 41 (1994), 329–347. Zbl0815.11050MR1316613
  5. Z. Cui, The ternary Goldbach problem in arithmetic progression II. Acta Math. Sinica (Chin. Ser.), 49 (1) (2006), 129–138. Zbl1230.11122MR2248920
  6. K. Ford, New estimates for mean values of Weyl sums. International Math. Research Notices, 3 (1995), 155–171. Zbl0821.11050MR1321702
  7. K. Halupczok, On the number of representations in the ternary Goldbach problem with one prime number in a given residue class. J. Number Theory 117 no.2 (2006), 292–300. Zbl1099.11058MR2213766
  8. K. Halupczok, On the ternary Goldbach problem with primes in independent arithmetic progressions. Acta Math. Hungar., 120 (4) (2008), 315–349. Zbl1174.11080MR2452756
  9. K. Halupczok, On the ternary Goldbach problem with primes in arithmetic progressions having a common modulus. J. Théorie Nombres Bordeaux, 21 (2009), 203–213. Zbl1230.11125MR2537712
  10. L.-K. Hua, Some results in the additive prime number theory. Quart. J. Math. Oxford 9 (1938), 68–80. Zbl0018.29404
  11. L.-K. Hua, Additive Theory of Prime Numbers . Providence, Rhode Island: American Math. Soc., 1965. Zbl0192.39304MR194404
  12. M.B.S. Laporta, D.I. Tolev, On the sum of five squares of primes, one of which belongs to an arithmetic progression. Fundam. Prikl. Mat. (in Russian), 8 (2002), n.1, 85–96. Zbl1027.11077MR1920439
  13. M.B.S. Laporta, On the Goldbach-Waring problem with primes in arithmetic progressions. Unpublished manuscript. Zbl1315.11087
  14. J.Y. Liu, T. Zhan, The ternary Goldbach problem in arithmetic progressions. Acta Arith. 82 (1997), 197–227. Zbl0889.11035MR1482887
  15. J.Y. Liu, T. Zhan, The Goldbach-Vinogradov Theorem. In: Number Theory in Progress, Proceedings of the International Conference on Number Theory (Zakopane, Poland, 1997), (ed. by K. Gyory, H. Iwaniec, J. Urbanowicz), 1005–1023. Walter de Gruyter, Berlin, 1999. Zbl0937.11047MR1689556
  16. M.C. Liu, T. Zhan, The Goldbach problem with primes in arithmetic progressions. In: Analytic Number Theory (Kyoto, 1996), (ed. by Y.Motohashi; London Math. Soc. Lecture Note Ser. 247), 227–251. Cambridge University Press, Cambridge, 1997. Zbl0913.11043MR1694994
  17. H.L. Montgomery, A note on the large sieve. J. London Math. Soc. 43 (1968), 93–98. Zbl0254.10043MR224585
  18. H.L. Montgomery, Topics in Multiplicative Number Theory. Lecture Notes in Mathematics 227, Springer-Verlag, 1971. Zbl0216.03501MR337847
  19. D.I. Tolev, On the number of representations of an odd integer as a sum of three primes, one of which belongs to an arithmetic progression. Proceedings of the Mathematical Institute “Steklov”, Moskow, 218, 1997. Zbl0911.11048MR1636722
  20. R.C. Vaughan, The Hardy-Littlewood Method. Cambridge University Press, 2nd ed., 1997. Zbl0868.11046MR1435742
  21. I.M.Vinogradov, Representation of an odd number as a sum of three primes. Dokl. Akad. Nauk SSSR, 15 (1937), 169–172 (in Russian). Zbl0016.29101
  22. I.M. Vinogradov, Selected Works. Springer-Verlag, 1985. MR807530
  23. Y. Wang, Numbers representable by five prime squares with primes in an arithmetic progressions. Acta Arith., 90 (3) (1999), 217–244. Zbl0936.11058MR1715544
  24. T.D. Wooley, Vinogradov’s mean value theorem via efficient congruencing. Annals of Math., 175 (2012), 1575–1627. Zbl1267.11105
  25. Z.F. Zhang, T.Z. Wang, The ternary Goldbach problem with primes in arithmetic progression. Acta Math. Sinica (English Ser.), 17 (4) (2001), 679–696. Zbl1011.11062MR1891759
  26. A. Zulauf, On the number of representations of an integer as a sum of primes belonging to given arithmetical progressions. Compos. Mat., 15 (1961), 64–69. Zbl0099.03103MR137690
  27. A. Zulauf, Beweis einer Erweiterung des Satzes von Goldbach-Vinogradov. J. Reine. Angew. Math., 190 (1952), 169–198. Zbl0048.27603MR59305

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.