Centralizers of Involutions in Locally Finite-Simple Groups

A. Berkman; M. Kuzucuoglu; E. Özyurt

Rendiconti del Seminario Matematico della Università di Padova (2007)

  • Volume: 118, page 189-196
  • ISSN: 0041-8994

How to cite

top

Berkman, A., Kuzucuoglu, M., and Özyurt, E.. "Centralizers of Involutions in Locally Finite-Simple Groups." Rendiconti del Seminario Matematico della Università di Padova 118 (2007): 189-196. <http://eudml.org/doc/108721>.

@article{Berkman2007,
author = {Berkman, A., Kuzucuoglu, M., Özyurt, E.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {infinite locally finite-simple groups; finite simple subgroups; centralizers of involutions; infinite simple groups; inert subgroups},
language = {eng},
pages = {189-196},
publisher = {Seminario Matematico of the University of Padua},
title = {Centralizers of Involutions in Locally Finite-Simple Groups},
url = {http://eudml.org/doc/108721},
volume = {118},
year = {2007},
}

TY - JOUR
AU - Berkman, A.
AU - Kuzucuoglu, M.
AU - Özyurt, E.
TI - Centralizers of Involutions in Locally Finite-Simple Groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 118
SP - 189
EP - 196
LA - eng
KW - infinite locally finite-simple groups; finite simple subgroups; centralizers of involutions; infinite simple groups; inert subgroups
UR - http://eudml.org/doc/108721
ER -

References

top
  1. [1] M. ASCHABACHER - G. M. SEITZ, Involutions in Chevalley groups over fields of even order, Nagoya Math. J., Vol. 63 (1976), pp. 1-91. Zbl0359.20014MR422401
  2. [2] V.V. BELYAEV, Locally finite Chevalley groups, Studies in group theory, Academy of Sciences of the USSR, Urals Scientific Centre, 1984. Zbl0587.20019MR818993
  3. [3] V.V. BELYAEV, Locally finite groups containing a finite inseperable subgroup. Sibirskii Matematicheskii Z. (34) (1993), pp. 23-41. English Translation: Siberian Math. J., 34, no. 2 (1993), pp. 218-232. Zbl0836.20051MR1223752
  4. [4] V.V. BELYAEV, Semisimple periodic groups of finitary transformations, Algebra i Logika (32) (1993), pp. 17-33; English Translation: Algebra and Logic, (32) (1993), pp. 8-16. Zbl0837.20049MR1289035
  5. [5] A.V. BOROVIK, Embedding of finite Chevalley groups and periodic linear groups, Sibirsk. Mat. Zh., 24 (1983) 26-35; English Translation: Siberian Math. J., 24 (1983), pp. 843-851. Zbl0551.20026MR731040
  6. [6] B. HARTLEY - M. KUZUCUOǦLU, Centralizers of elements in locally finite simple groups, Proc. London Math. Soc. (3) 62 (1991), pp. 301-324. Zbl0682.20020MR1085643
  7. [7] B. HARTLEY - G. SHUTE, Monomorphism and direct limits of finite groups of Lie type, Quart. J. Math. Oxford (2) 33 (1982), pp. 309-323. Zbl0495.20011MR668177
  8. [8] B. HARTLEY et al (eds), Finite and Locally finite groups, NATO ASI series vol. 471. Kluwer Academic, Dordrecht, 1995. Zbl0827.00038MR1362803
  9. [9] Z. JANKO - J.C. THOMPSON, On a class of simple groups of Ree, J. Algebra, 4, no. 2 (1966), pp. 274-292. Zbl0145.02702MR201504
  10. [10] OTTO H. KEGEL - B. A. F. WEHRFRITZ, Locally Finite Groups, North-Holland Publishing Company - Amsterdam, 1973. Zbl0259.20001MR470081
  11. [11] M. KUZUCUOǦLU, Barely Transitive permutation groups, Arch. Math., 55 (1990), pp. 521-532. Zbl0694.20004MR1078272
  12. [12] V. M. LEVCHUK - YA. N. NUZHIN, The structure of Ree groups. (Russian) Algebra i Logika, 24, no. 1 (1985), 26-41, 122. English translation: Algebra and Logic, 24, no. 1 (1985), pp. 16-26. Zbl0581.20025MR816569
  13. [13] U. MEIERFRANKENFELD, Locally Finite Simple Groups, Lecture Notes on the Internet, http://www.mth.msu.edu/~meier/Classnotes/LFG/LFG.dvi Zbl0292.20028
  14. [14] U. MEIERFRANKENFELD, A simple subnormal subgroup for locally finite finitary linear groups. Preprint, 1992. 
  15. [15] M. SUZUKI, On a class of doubly transitive groups, Ann. of Math. (2) 75 (1962), pp. 105-145. Zbl0106.24702MR136646
  16. [16] M. SUZUKI, Group Theory Vol. I and Vol. II, 1986, Springer-Verlag, New York inc. Zbl0586.20001
  17. [17] D. E. TAYLOR, The Geometry of the Classical Groups, Heldermann Verlag, 1992. Zbl0767.20001MR1189139
  18. [18] S. THOMAS, The classification of the simple periodic linear groups, Arch. Math., 41 (1983), pp. 103-116. Zbl0518.20039MR719412
  19. [19] H. N. WARD, On Ree's series of simple groups, Trans. AMS No: 121 (1966), pp. 62-89. Zbl0139.24902MR197587
  20. [20] A. E. ZALESKII - V. N. SEREZHKIN, Finite linear groups generated by reflections, Math. USSR-Izv., 17 (1981), pp. 477-503. Zbl0478.20033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.