On the b -ary expansion of an algebraic number

Yann Bugeaud

Rendiconti del Seminario Matematico della Università di Padova (2007)

  • Volume: 118, page 217-233
  • ISSN: 0041-8994

How to cite

top

Bugeaud, Yann. "On the $b$-ary expansion of an algebraic number." Rendiconti del Seminario Matematico della Università di Padova 118 (2007): 217-233. <http://eudml.org/doc/108724>.

@article{Bugeaud2007,
author = {Bugeaud, Yann},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {digits of -ary expansions; real algebraic numbers},
language = {eng},
pages = {217-233},
publisher = {Seminario Matematico of the University of Padua},
title = {On the $b$-ary expansion of an algebraic number},
url = {http://eudml.org/doc/108724},
volume = {118},
year = {2007},
}

TY - JOUR
AU - Bugeaud, Yann
TI - On the $b$-ary expansion of an algebraic number
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 118
SP - 217
EP - 233
LA - eng
KW - digits of -ary expansions; real algebraic numbers
UR - http://eudml.org/doc/108724
ER -

References

top
  1. [1] B. ADAMCZEWSKI, Transcendance «à la Liouville» de certains nombres réels, C. R. Acad. Sci. Paris, 338 (2004), pp. 511-514. Zbl1046.11051MR2057021
  2. [2] B. ADAMCZEWSKI - Y. BUGEAUD, On the complexity of algebraic numbers I. Expansions in integer bases, Ann. of Math., 165 (2007), pp. 547-565. Zbl1195.11094MR2299740
  3. [3] B. ADAMCZEWSKI - Y. BUGEAUD, On the Maillet-Baker continued fractions, J. reine angew. Math., 606 (2007), pp. 105-121. Zbl1145.11054MR2337643
  4. [4] B. ADAMCZEWSKI - Y. BUGEAUD, Dynamics for b-shifts and Diophantine approximation, Ergodic Theory Dynam. Systems. To appear. Zbl1140.11035MR2371591
  5. [5] B. ADAMCZEWSKI - Y. BUGEAUD - F. LUCA, Sur la complexité des nombres algébriques, C. R. Acad. Sci. Paris, 339 (2004), pp. 11-14. Zbl1119.11019MR2075225
  6. [6] D. H. BAILEY - J. M. BORWEIN - R. E. CRANDALL - C. POMERANCE, On the binary expansions of algebraic numbers, J. Théor. Nombres Bordeaux, 16 (2004), pp. 487-518. Zbl1076.11045MR2144954
  7. [7] E. BOMBIERI - W. GUBLER, Heights in Diophantine Geometry. New mathematical monographs 4, Cambridge University Press, 2006. Zbl1115.11034MR2216774
  8. [8] E. BOMBIERI - A. J. VAN DER POORTEN, Some quantitative results related to Roth's theorem, J. Austral. Math. Soc. Ser. A, 45 (1988), pp. 233-248. Zbl0664.10017MR951583
  9. [9] P. CORVAJA - U. ZANNIER, Some new applications of the subspace theorem, Compositio Math., 131 (2002), pp. 319-340. Zbl1010.11038MR1905026
  10. [10] M. CUGIANI, Sull'approssimabilità di un numero algebrico mediante numeri algebrici di un corpo assegnato, Boll. Un. Mat. Ital., 14 (1959), pp. 151-162. Zbl0086.26402MR117220
  11. [11] M. CUGIANI, Sulla approssimabilità dei numeri algebrici mediante numeri razionali, Ann. Mat. Pura Appl., 48 (1959), pp. 135-145. Zbl0093.05402MR112880
  12. [12] J.-H. EVERTSE - H. P. SCHLICKEWEI, A quantitative version of the absolute subspace theorem, J. reine angew. Math., 548 (2002), pp. 21-127. Zbl1026.11060
  13. [13] H. LOCHER, On the number of good approximations of algebraic numbers by algebraic numbers of bounded degree, Acta Arith., 89 (1999), pp. 97-122. Zbl0938.11035
  14. [14] K. MAHLER, Lectures on Diophantine approximation, Part 1: g-adic numbers and Roth's theorem, University of Notre Dame, Ann Arbor, 1961. Zbl0158.29903
  15. [15] A. RÉNYI, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung., 8 (1957), pp. 477-493. Zbl0079.08901
  16. [16] D. RIDOUT, Rational approximations to algebraic numbers, Mathematika, 4 (1957), pp. 125-131. Zbl0079.27401
  17. [17] D. RIDOUT, The p-adic generalization of the Thue-Siegel-Roth theorem, Mathematika, 5 (1958), pp. 40-48. Zbl0085.03501MR97382
  18. [18] T. RIVOAL, On the bits couting function of real numbers. Preprint available at: http://www-fourier.ujf-grenoble.fr/ rivoal/articles.html Zbl1234.11099MR2460868
  19. [19] T. SCHNEIDER, Einführung in die transzendenten Zahlen. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957. Zbl0077.04703MR86842
  20. [20] M. WALDSCHMIDT, Diophantine Approximation on Linear Algebraic Groups. Transcendence properties of the exponential function in several variables. Grundlehren der Mathematischen Wissenschaften 326. Springer-Verlag, Berlin, 2000. Zbl0944.11024MR1756786

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.