On the binary expansions of algebraic numbers
David H. Bailey[1]; Jonathan M. Borwein[2]; Richard E. Crandall[3]; Carl Pomerance[4]
- [1] Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720, USA
- [2] Dalhousie University Department of Computer Science Halifax, NS B3H 4R2, Canada
- [3] Center for Advanced Computation Reed College Portland, OR 97202, USA
- [4] Dartmouth College Department of Mathematics 6188 Bradley Hall Hanover, NH 03755-3551, USA
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 3, page 487-518
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- J.-P. Allouche, J. Shallit, Automatic Sequences; Theory, Applications, Generalizations. Cambridge University Press, 2003. Zbl1086.11015MR1997038
- David H. Bailey, Peter B. Borwein, Simon Plouffe, On The Rapid Computation of Various Polylogarithmic Constants. Mathematics of Computation 66 no. 218 (1997), 903–913. Zbl0879.11073MR1415794
- David H. Bailey, Richard E. Crandall, On the Random Character of Fundamental Constant Expansions. Experimental Mathematics 10 (2001), 175–190. Zbl1047.11073MR1837669
- David H. Bailey, Richard E. Crandall, Random generators and normal numbers. Experimental Mathematics, to appear. Zbl1165.11328MR1969644
- D. Bertrand, Theta functions and transcendence. Ramanujan Journal 1 (1997), 339–350. Zbl0916.11043MR1608721
- É. Borel, Sur les chiffres décimaux de et divers problèmes de probabilités en chaine. C. R. Acad. Sci. Paris 230 (1950), 591–593. Zbl0035.08302MR34544
- É. Borel, Oeuvres d’É. Borel Vol. 2. Éditions du CNRS, Paris, 1972, 1203-1204. Zbl0256.01025
- Peter Borwein, On the Irrationality of Certain Series. Mathematical Proceedings of the Cambridge Philosophical Society, 112 (1992), 141–146. Zbl0779.11027MR1162938
- D. G. Champernowne, The Construction of Decimals Normal in the Scale of Ten. Journal of the London Mathematical Society 8 (1933), 254–260. Zbl0007.33701
- R. Crandall, C. Pomerance, Prime Numbers: A Computational Perspective. Springer-Verlag, New York, 2002. Zbl0995.11072MR2156291
- R. Crandall, S. Wagon, Sums of squares: computational aspects. Manuscript, 2002.
- D. Duverney, Keiji. Nishioka, Kumiko Nishioka, I. Shiokawa, Transcendence of Jacobi’s theta series and related results. Number Theory. Diophantine, Computational and Algebraic Aspects, Kálmän Yöry (ed.) et al. , Walter de Gruyter, Berlin (1998), 157–168. Zbl0938.11039MR1628840
- P. Erdős, On Arithmetical Properties of Lambert Series. Journal of the Indian Mathematical Society (N.S.) 12 (1948), 63–66. Zbl0032.01701MR29405
- P. Flajolet, I. Vardi, Zeta Function Expansions of Classical Constants. Manuscript (1996), available at http://pauillac.inria.fr/algo/flajolet/Publications/Landau.ps
- E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985. Zbl0574.10045MR803155
- H. Halberstam, H.-E. Richert, Sieve Methods. Academic Press, London, 1974. Zbl0298.10026MR424730
- G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers. Oxford University Press, 1979. Zbl0020.29201MR568909
- G. H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999, 9–10, 55, and 60–64. Zbl0086.26202MR4860
- Aubrey J. Kempner, On Transcendental Numbers Transactions of the American Mathematical Society 17 (1916), 476–482. MR1501054
- M. J. Knight, An ‘Ocean of Zeroes’ Proof That a Certain Non-Liouville Number is Transcendental. American Mathematical Monthly 98 (1991), 947–949. Zbl0743.11034MR1137543
- L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences. Wiley-Interscience, New York, 1974. Zbl0281.10001MR419394
- J. Lagarias, On the Normality of Fundamental Constants. Experimental Mathematics 10, no. 3 (2001), 353–366. MR1917424
- E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Bd. II, 2nd ed. New York: Chelsea, 1953, 641–669. Zbl0051.28007
- S. Lehr, Sums and rational multiples of -automatic sequences are -automatic. Theor. Comp. Sci. 108 (1993) 385–391. Zbl0768.11013MR1202029
- S. Lehr, J. Shallit, J. Tromp, On the vector space of the automatic reals. Theoretical Computer Science 163 (1996), 193–210. Zbl0874.11029MR1407021
- J. H. Loxton, A method of Mahler in transcendence theory and some of its applications. Bulletin of the Australian Mathematical Society 29 (1984), 127–136. Zbl0519.10022MR732180
- J. H. Loxton, A. J. van der Poorten, Arithmetic properties of certain functions in several variables III. Bull. Austral. Math. Soc. 16 (1977), 15–47. Zbl0339.10028MR452125
- G. Martin, Absolutely Abnormal Numbers. American Mathematical Monthly 108 no. 8 (2001), 746–754. Zbl1036.11035MR1865662
- W. Miller, Transcendence measures by a method of Mahler. Journal of the Australian Mathematical Society (Series A) 32 (1982), 68–78. Zbl0482.10036MR643431
- Yu. V. Nesterenko, Modular functions and transcendence questions. Mat. Sb. 187 (1996), 65–96; translation in Sb. Math. 187 (1996), 1319–1348 [MR 97m:11102] Zbl0898.11031MR1422383
- I. Niven, Irrational Numbers. Carus Mathematical Monographs, no. 11, Wiley, New York, 1956. Zbl0070.27101MR80123
- P. Ribenboim, The New Book of Prime Number Records. Springer-Verlag, New York, 1996. Zbl0856.11001MR1377060
- K. Roth, Rational Approximations to Algebraic Numbers. Mathematika 2 (1955), 1–20. Corrigendum, pp. 168. Zbl0064.28501MR72182
- J. Samborski, Problem E2667. American Mathematical Monthly 84 (1977), pp. 567.
- J. Shallit, private communication.
- J. Shallit, A. van der Poorten, A specialised continued fraction. Canadian Journal of Mathematics 45 (1993), 1067–1079. Zbl0797.11007MR1239914