Etude du spectre pour certains noyaux sur un arbre

Ferdaous Kellil; Guy Rousseau

Rendiconti del Seminario Matematico della Università di Padova (2008)

  • Volume: 120, page 29-44
  • ISSN: 0041-8994

How to cite

top

Kellil, Ferdaous, and Rousseau, Guy. "Etude du spectre pour certains noyaux sur un arbre." Rendiconti del Seminario Matematico della Università di Padova 120 (2008): 29-44. <http://eudml.org/doc/108745>.

@article{Kellil2008,
author = {Kellil, Ferdaous, Rousseau, Guy},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {fre},
pages = {29-44},
publisher = {Seminario Matematico of the University of Padua},
title = {Etude du spectre pour certains noyaux sur un arbre},
url = {http://eudml.org/doc/108745},
volume = {120},
year = {2008},
}

TY - JOUR
AU - Kellil, Ferdaous
AU - Rousseau, Guy
TI - Etude du spectre pour certains noyaux sur un arbre
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2008
PB - Seminario Matematico of the University of Padua
VL - 120
SP - 29
EP - 44
LA - fre
UR - http://eudml.org/doc/108745
ER -

References

top
  1. [A] K. AOMOTO, Spectral theory on a free group and algebraic curves, J. Fac. Sci., Univ. Tokyo, 31 (1984), pp. 297-317. Zbl0583.60068MR763424
  2. [B.K] F. BOUAZIZ-KELLIL, Représentations sphériques des groupes agissant transitivement sur un arbre semi-homogène, Bull. Soc. Math. France, 116 (1988), pp. 255-278. Zbl0681.43013MR984897
  3. [C-C] J. M. COHEN - F. COLONNA, Eigenfunctions of the laplacien on homogeneous tree, Contemp. Math., 206 (1997), pp. 121-124. Zbl0890.43005MR1463733
  4. [Ft-S] A. FIGÀ-TALAMANCA - T. STEGER, Harmonic analysis for anisotropic random walks on homogeneous trees, Memoirs of AMS, 531 (1994). Zbl0836.43019MR1219707
  5. [K-R.1] F. KELLIL - G. ROUSSEAU, Généralisation d'un théorème de Haagerup, Studia Math., 168 (3) (2005), pp. 217-227. Zbl1073.43006MR2146124
  6. [K-R.2] F. KELLIL - G. ROUSSEAU, Transformation de Poisson sur un arbre localement fini, Ann. Math. Blaise Pascal, 12 (2005), pp. 91-116. Zbl1109.43006MR2126443
  7. [St] T. STEGER, Harmonic analysis for an anisotropic random walk on a homogeneous tree, Thesis, Washington Univ., St. Louis, 1985. 

NotesEmbed ?

top

You must be logged in to post comments.