Capitulation for even -groups in the cyclotomic -extension.
- [1] XLIM DMI - UMR CNRS 6172 123, avenue Albert Thomas 87060 LIMOGES CEDEX (France).
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 2, page 439-454
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topValidire, Romain. "Capitulation for even $K$-groups in the cyclotomic $\mathbb{Z}_p$-extension.." Journal de Théorie des Nombres de Bordeaux 21.2 (2009): 439-454. <http://eudml.org/doc/10891>.
@article{Validire2009,
abstract = {Let $p$ be a prime number and $F$ be a number field. Since Iwasawa’s works, the behaviour of the $p$-part of the ideal class group in the $\mathbb\{Z\}_p$-extensions of $F$ has been well understood. Moreover, M. Grandet and J.-F. Jaulent gave a precise result about its abelian $p$-group structure.On the other hand, the ideal class group of a number field may be identified with the torsion part of the $K_0$ of its ring of integers. The even $K$-groups of rings of integers appear as higher versions of the class group. Many authors have already studied the behaviour of the higher even $K$-groups in a $\mathbb\{Z\}_p$-extension. Here, we prove that Grandet and Jaulent’s result on class group still holds for higher even $K$-groups in the cyclotomic $\mathbb\{Z\}_p$-extension.},
affiliation = {XLIM DMI - UMR CNRS 6172 123, avenue Albert Thomas 87060 LIMOGES CEDEX (France).},
author = {Validire, Romain},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {-groups; -extensions; étale cohomology},
language = {eng},
number = {2},
pages = {439-454},
publisher = {Université Bordeaux 1},
title = {Capitulation for even $K$-groups in the cyclotomic $\mathbb\{Z\}_p$-extension.},
url = {http://eudml.org/doc/10891},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Validire, Romain
TI - Capitulation for even $K$-groups in the cyclotomic $\mathbb{Z}_p$-extension.
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 2
SP - 439
EP - 454
AB - Let $p$ be a prime number and $F$ be a number field. Since Iwasawa’s works, the behaviour of the $p$-part of the ideal class group in the $\mathbb{Z}_p$-extensions of $F$ has been well understood. Moreover, M. Grandet and J.-F. Jaulent gave a precise result about its abelian $p$-group structure.On the other hand, the ideal class group of a number field may be identified with the torsion part of the $K_0$ of its ring of integers. The even $K$-groups of rings of integers appear as higher versions of the class group. Many authors have already studied the behaviour of the higher even $K$-groups in a $\mathbb{Z}_p$-extension. Here, we prove that Grandet and Jaulent’s result on class group still holds for higher even $K$-groups in the cyclotomic $\mathbb{Z}_p$-extension.
LA - eng
KW - -groups; -extensions; étale cohomology
UR - http://eudml.org/doc/10891
ER -
References
top- J. Assim & A. Movahhedi, Bounds for étale Capitulation Kernels. -theory, 33 (2004), 199–213. Zbl1163.11347MR2138541
- G. Banaszak, Generalization of the Moore exact sequence and the wild kernel for higher -groups. Compositio Math., 86 (1993), 281–305. Zbl0778.11066MR1219629
- W. Dwyer & E. Friedlander, Algebraic and étale -theory. Trans. Amer. Soc. 247 (1985), 247–280. Zbl0581.14012MR805962
- B. Ferrero & L. Washington, The Iwasawa invariant vanishes for abelian number fields. Ann. Math. 109 (1979), 377–395. Zbl0443.12001MR528968
- M. Grandet & J.-F. Jaulent, Sur la capitulation dans les -extensions. J. reine angew. Math. 362, 213–217. Zbl0564.12011MR809976
- K. Iwasawa, On -extensions of algebraic number fields. Ann. Math. 98 (1973), 243–326. Zbl0285.12008MR349627
- J.-F. Jaulent, Sur le noyau sauvage des corps de nombres. Acta Arith. 67 (1994), no.4, 335–348. Zbl0835.11042MR1301823
- J.-F. Jaulent, Théorie -adique globale du corps de classes. J. Théor. Nombres Bordeaux 10 (1998), 355–397. Zbl0938.11052MR1828250
- J.-F. Jaulent & A. Michel, Approche logarithmique des noyaux étales sauvages des corps de nombres. J. Number Theory 120 (2006), no. 1, 72–91. Zbl1163.11075MR2256797
- B. Kahn, Descente galoisienne et des corps de nombres. -theory 7 (1993), 55–100. Zbl0780.12007MR1220427
- K. Krammer & A. Candiotti, On and extensions of number fields. Amer. J. Math. 100 (1978), 177–196. Zbl0388.12004MR485369
- M. Kolster & A. Movahhedi, Galois co-descent for étale wild kernels and capitulation. Ann. Inst. Fourier 50 (2000), 35–65. Zbl0951.11029MR1762337
- M. Kolster, -theory and arithmetic. Contemporary developments in algebraic -theory, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys. Trieste, (2004). Zbl1071.19002MR2175640
- L. V. Kuz’min, The Tate module for algebraic number fields. Math. USSR Izv.,6, No. 2 (1972), 263–361. Zbl0257.12003MR304353
- M. Le Floc’h, A. Movahhedi & T. Nguyen Quang Do, On capitulation cokernels in Iwasawa theory. Amer. Journal of Mathematics, 127 (2005), 851–877. Zbl1094.11039MR2154373
- T. Nguyen Quang Do, Sur la -torsion de certains modules galoisiens. Ann. Inst. Fourier 36, no. 2 (1986), 27–46. Zbl0576.12010MR850741
- T. Nguyen Quang Do, Analogues supérieurs du noyau sauvage. Journal de Théorie des Nombres de Bordeaux 4 (1992), 263–271. Zbl0783.11042MR1208865
- T. Nguyen Quang Do, Théorie d’Iwasawa des noyaux sauvages étales d’un corps de nombres. Publications Math. de la Faculté des Sciences de Besançon (2002). Zbl1161.11395
- J. Neukirch, A. Schmidt & K. Wingberg, Cohomology of number fields. Springer Verlag, Berlin (2000). Zbl0948.11001MR1737196
- P. Schneider, Über gewisse Galoiscohomologiegruppen. Math. Z. 168, 181–205 (1979). Zbl0421.12024MR544704
- J. Tate, Relations between and Galois cohomology. Invent. Math. 36 (1976), 257–274. Zbl0359.12011MR429837
- R. Validire, Capitulation des noyaux sauvages étales. Thèse de l’Université de Limoges, (2008).
- C. Weibel, Algebraic -theory of rings of integers in local and global fields. Handbook of -theory Vol. 1, 2, 139–190, Springer, Berlin, (2005). Zbl1097.19003MR2181823
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.