Capitulation for even K -groups in the cyclotomic p -extension.

Romain Validire[1]

  • [1] XLIM DMI - UMR CNRS 6172 123, avenue Albert Thomas 87060 LIMOGES CEDEX (France).

Journal de Théorie des Nombres de Bordeaux (2009)

  • Volume: 21, Issue: 2, page 439-454
  • ISSN: 1246-7405

Abstract

top
Let p be a prime number and F be a number field. Since Iwasawa’s works, the behaviour of the p -part of the ideal class group in the p -extensions of F has been well understood. Moreover, M. Grandet and J.-F. Jaulent gave a precise result about its abelian p -group structure.On the other hand, the ideal class group of a number field may be identified with the torsion part of the K 0 of its ring of integers. The even K -groups of rings of integers appear as higher versions of the class group. Many authors have already studied the behaviour of the higher even K -groups in a p -extension. Here, we prove that Grandet and Jaulent’s result on class group still holds for higher even K -groups in the cyclotomic p -extension.

How to cite

top

Validire, Romain. "Capitulation for even $K$-groups in the cyclotomic $\mathbb{Z}_p$-extension.." Journal de Théorie des Nombres de Bordeaux 21.2 (2009): 439-454. <http://eudml.org/doc/10891>.

@article{Validire2009,
abstract = {Let $p$ be a prime number and $F$ be a number field. Since Iwasawa’s works, the behaviour of the $p$-part of the ideal class group in the $\mathbb\{Z\}_p$-extensions of $F$ has been well understood. Moreover, M. Grandet and J.-F. Jaulent gave a precise result about its abelian $p$-group structure.On the other hand, the ideal class group of a number field may be identified with the torsion part of the $K_0$ of its ring of integers. The even $K$-groups of rings of integers appear as higher versions of the class group. Many authors have already studied the behaviour of the higher even $K$-groups in a $\mathbb\{Z\}_p$-extension. Here, we prove that Grandet and Jaulent’s result on class group still holds for higher even $K$-groups in the cyclotomic $\mathbb\{Z\}_p$-extension.},
affiliation = {XLIM DMI - UMR CNRS 6172 123, avenue Albert Thomas 87060 LIMOGES CEDEX (France).},
author = {Validire, Romain},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {-groups; -extensions; étale cohomology},
language = {eng},
number = {2},
pages = {439-454},
publisher = {Université Bordeaux 1},
title = {Capitulation for even $K$-groups in the cyclotomic $\mathbb\{Z\}_p$-extension.},
url = {http://eudml.org/doc/10891},
volume = {21},
year = {2009},
}

TY - JOUR
AU - Validire, Romain
TI - Capitulation for even $K$-groups in the cyclotomic $\mathbb{Z}_p$-extension.
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 2
SP - 439
EP - 454
AB - Let $p$ be a prime number and $F$ be a number field. Since Iwasawa’s works, the behaviour of the $p$-part of the ideal class group in the $\mathbb{Z}_p$-extensions of $F$ has been well understood. Moreover, M. Grandet and J.-F. Jaulent gave a precise result about its abelian $p$-group structure.On the other hand, the ideal class group of a number field may be identified with the torsion part of the $K_0$ of its ring of integers. The even $K$-groups of rings of integers appear as higher versions of the class group. Many authors have already studied the behaviour of the higher even $K$-groups in a $\mathbb{Z}_p$-extension. Here, we prove that Grandet and Jaulent’s result on class group still holds for higher even $K$-groups in the cyclotomic $\mathbb{Z}_p$-extension.
LA - eng
KW - -groups; -extensions; étale cohomology
UR - http://eudml.org/doc/10891
ER -

References

top
  1. J. Assim & A. Movahhedi, Bounds for étale Capitulation Kernels. K -theory, 33 (2004), 199–213. Zbl1163.11347MR2138541
  2. G. Banaszak, Generalization of the Moore exact sequence and the wild kernel for higher K -groups. Compositio Math., 86 (1993), 281–305. Zbl0778.11066MR1219629
  3. W. Dwyer & E. Friedlander, Algebraic and étale K -theory. Trans. Amer. Soc. 247 (1985), 247–280. Zbl0581.14012MR805962
  4. B. Ferrero & L. Washington, The Iwasawa invariant μ p vanishes for abelian number fields. Ann. Math. 109 (1979), 377–395. Zbl0443.12001MR528968
  5. M. Grandet & J.-F. Jaulent, Sur la capitulation dans les -extensions. J. reine angew. Math. 362, 213–217. Zbl0564.12011MR809976
  6. K. Iwasawa, On -extensions of algebraic number fields. Ann. Math. 98 (1973), 243–326. Zbl0285.12008MR349627
  7. J.-F. Jaulent, Sur le noyau sauvage des corps de nombres. Acta Arith. 67 (1994), no.4, 335–348. Zbl0835.11042MR1301823
  8. J.-F. Jaulent, Théorie -adique globale du corps de classes. J. Théor. Nombres Bordeaux 10 (1998), 355–397. Zbl0938.11052MR1828250
  9. J.-F. Jaulent & A. Michel, Approche logarithmique des noyaux étales sauvages des corps de nombres. J. Number Theory 120 (2006), no. 1, 72–91. Zbl1163.11075MR2256797
  10. B. Kahn, Descente galoisienne et K 2 des corps de nombres. K -theory 7 (1993), 55–100. Zbl0780.12007MR1220427
  11. K. Krammer & A. Candiotti, On K 2 and l extensions of number fields. Amer. J. Math. 100 (1978), 177–196. Zbl0388.12004MR485369
  12. M. Kolster & A. Movahhedi, Galois co-descent for étale wild kernels and capitulation. Ann. Inst. Fourier 50 (2000), 35–65. Zbl0951.11029MR1762337
  13. M. Kolster, K -theory and arithmetic. Contemporary developments in algebraic K -theory, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys. Trieste, (2004). Zbl1071.19002MR2175640
  14. L. V. Kuz’min, The Tate module for algebraic number fields. Math. USSR Izv.,6, No. 2 (1972), 263–361. Zbl0257.12003MR304353
  15. M. Le Floc’h, A. Movahhedi & T. Nguyen Quang Do, On capitulation cokernels in Iwasawa theory. Amer. Journal of Mathematics, 127 (2005), 851–877. Zbl1094.11039MR2154373
  16. T. Nguyen Quang Do, Sur la p -torsion de certains modules galoisiens. Ann. Inst. Fourier 36, no. 2 (1986), 27–46. Zbl0576.12010MR850741
  17. T. Nguyen Quang Do, Analogues supérieurs du noyau sauvage. Journal de Théorie des Nombres de Bordeaux 4 (1992), 263–271. Zbl0783.11042MR1208865
  18. T. Nguyen Quang Do, Théorie d’Iwasawa des noyaux sauvages étales d’un corps de nombres. Publications Math. de la Faculté des Sciences de Besançon (2002). Zbl1161.11395
  19. J. Neukirch, A. Schmidt & K. Wingberg, Cohomology of number fields. Springer Verlag, Berlin (2000). Zbl0948.11001MR1737196
  20. P. Schneider, Über gewisse Galoiscohomologiegruppen. Math. Z. 168, 181–205 (1979). Zbl0421.12024MR544704
  21. J. Tate, Relations between K 2 and Galois cohomology. Invent. Math. 36 (1976), 257–274. Zbl0359.12011MR429837
  22. R. Validire, Capitulation des noyaux sauvages étales. Thèse de l’Université de Limoges, (2008). 
  23. C. Weibel, Algebraic K -theory of rings of integers in local and global fields. Handbook of K -theory Vol. 1, 2, 139–190, Springer, Berlin, (2005). Zbl1097.19003MR2181823

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.