Galois co-descent for étale wild kernels and capitulation

Manfred Kolster; Abbas Movahhedi

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 1, page 35-65
  • ISSN: 0373-0956

Abstract

top
Let F be a number field with ring of integers o F . For a fixed prime number p and i 2 the étale wild kernels W K 2 i - 2 e ´ t ( F ) are defined as kernels of certain localization maps on the i -fold twist of the p -adic étale cohomology groups of spec o F [ 1 p ] . These groups are finite and coincide for i = 2 with the p -part of the classical wild kernel W K 2 ( F ) . They play a role similar to the p -part of the p -class group of F . For class groups, Galois co-descent in a cyclic extension L / F is described by the ambiguous class formula given by genus theory. In this formula, the only factor which is not well mastered is the norm index [ U F ' : U F ' N L / F ( L * ) ] for the p -units U F ' . The aim of this paper is the study of the Galois co-descent for wild kernels: Given a cyclic extension L / F of degree p with Galois group G , we show that the transfer map W K 2 i - 2 e ´ t ( L ) G W K 2 i - 2 e ´ t ( F ) is onto except in a very special case, then we determine its kernel as the cokernel of a certain cup-product with values in a Brauer group. This approach also yields a genus formula, analogous to the one for class groups, comparing the sizes of W K 2 i - 2 e ´ t ( L ) G and W K 2 i - 2 e ´ t ( F ) where p -units U F ' are replaced by odd K -theory groups. When p is odd, we illustrate the method by finding all Galois p -extensions of Q , for which the p -part of the classical wild kernel is trivial. For p 5 ,they turn out to be the layers of the cyclotomic Z p -extension of Q .

How to cite

top

Kolster, Manfred, and Movahhedi, Abbas. "Galois co-descent for étale wild kernels and capitulation." Annales de l'institut Fourier 50.1 (2000): 35-65. <http://eudml.org/doc/75419>.

@article{Kolster2000,
abstract = {Let $F$ be a number field with ring of integers $o_F$. For a fixed prime number $p$ and $i \ge 2$ the étale wild kernels $WK^\{\{\rm \acute\{e\}t\}\}_\{2i-2\}(F)$ are defined as kernels of certain localization maps on the $i$-fold twist of the $p$-adic étale cohomology groups of $\{\rm spec\}\,o_F[\{1\over p\}]$. These groups are finite and coincide for $i=2$ with the $p$-part of the classical wild kernel $WK_2(F)$. They play a role similar to the $p$-part of the $p$-class group of $F$. For class groups, Galois co-descent in a cyclic extension $L/F$ is described by the ambiguous class formula given by genus theory. In this formula, the only factor which is not well mastered is the norm index $[U^\{\prime \}_F:U^\{\prime \}_F \cap N_\{L/F\}(L^*)]$ for the $p$-units $U^\{\prime \}_F$. The aim of this paper is the study of the Galois co-descent for wild kernels: Given a cyclic extension $L/F$ of degree $p$ with Galois group $G$, we show that the transfer map $WK^\{\{\rm \acute\{e\}t\}\}_\{2i-2\}(\{L\})_G \rightarrow WK^\{\{\rm \acute\{e\}t\}\}_\{2i-2\}(\{F\})$ is onto except in a very special case, then we determine its kernel as the cokernel of a certain cup-product with values in a Brauer group. This approach also yields a genus formula, analogous to the one for class groups, comparing the sizes of $WK^\{\{\rm \acute\{e\}t\}\}_\{2i-2\}(L)_G$ and $WK^\{\{\rm \acute\{e\}t\}\}_\{2i-2\}(F)$ where $p$-units $U^\{\prime \}_F$ are replaced by odd $K$-theory groups. When $p$ is odd, we illustrate the method by finding all Galois $p$-extensions of $\{\bf Q\}$, for which the $p$-part of the classical wild kernel is trivial. For $p \ge 5$,they turn out to be the layers of the cyclotomic $\{\bf Z\}_p$-extension of $\{\bf Q\}$.},
author = {Kolster, Manfred, Movahhedi, Abbas},
journal = {Annales de l'institut Fourier},
keywords = {wild kernel; codescent; étale capitulation; étale cohomology; étale -theory; Iwasawa theory; Greenberg's conjecture},
language = {eng},
number = {1},
pages = {35-65},
publisher = {Association des Annales de l'Institut Fourier},
title = {Galois co-descent for étale wild kernels and capitulation},
url = {http://eudml.org/doc/75419},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Kolster, Manfred
AU - Movahhedi, Abbas
TI - Galois co-descent for étale wild kernels and capitulation
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 1
SP - 35
EP - 65
AB - Let $F$ be a number field with ring of integers $o_F$. For a fixed prime number $p$ and $i \ge 2$ the étale wild kernels $WK^{{\rm \acute{e}t}}_{2i-2}(F)$ are defined as kernels of certain localization maps on the $i$-fold twist of the $p$-adic étale cohomology groups of ${\rm spec}\,o_F[{1\over p}]$. These groups are finite and coincide for $i=2$ with the $p$-part of the classical wild kernel $WK_2(F)$. They play a role similar to the $p$-part of the $p$-class group of $F$. For class groups, Galois co-descent in a cyclic extension $L/F$ is described by the ambiguous class formula given by genus theory. In this formula, the only factor which is not well mastered is the norm index $[U^{\prime }_F:U^{\prime }_F \cap N_{L/F}(L^*)]$ for the $p$-units $U^{\prime }_F$. The aim of this paper is the study of the Galois co-descent for wild kernels: Given a cyclic extension $L/F$ of degree $p$ with Galois group $G$, we show that the transfer map $WK^{{\rm \acute{e}t}}_{2i-2}({L})_G \rightarrow WK^{{\rm \acute{e}t}}_{2i-2}({F})$ is onto except in a very special case, then we determine its kernel as the cokernel of a certain cup-product with values in a Brauer group. This approach also yields a genus formula, analogous to the one for class groups, comparing the sizes of $WK^{{\rm \acute{e}t}}_{2i-2}(L)_G$ and $WK^{{\rm \acute{e}t}}_{2i-2}(F)$ where $p$-units $U^{\prime }_F$ are replaced by odd $K$-theory groups. When $p$ is odd, we illustrate the method by finding all Galois $p$-extensions of ${\bf Q}$, for which the $p$-part of the classical wild kernel is trivial. For $p \ge 5$,they turn out to be the layers of the cyclotomic ${\bf Z}_p$-extension of ${\bf Q}$.
LA - eng
KW - wild kernel; codescent; étale capitulation; étale cohomology; étale -theory; Iwasawa theory; Greenberg's conjecture
UR - http://eudml.org/doc/75419
ER -

References

top
  1. [1] J. ASSIM, Sur la p-nullité de certains noyaux de la K-théorie, Thèse, Université de Franche-Comté, 1994. 
  2. [2] J. ASSIM, Codescente en K-théorie étale et corps de nombres, Manuscripta Math., 86 (1995) 499-518. Zbl0835.11043MR96d:11123
  3. [3] G. BANASZAK, Generalization of the Moore exact sequence and the wild kernel for higher K-groups, Compositio Math., 86 (1993), 281-305. Zbl0778.11066MR94d:19010
  4. [4] A. BOREL, Cohomologie de SLn et valeurs de fonctions zêta aux points entiers, Ann. Scuola Normale Sup. Pisa, Ser. 4, 4 (1977), 613-636. Zbl0382.57027MR58 #22016
  5. [5] B. BRAUCKMANN, Étale K-theory and Iwasawa-theory of number fields, Thesis McMaster University, 1993. 
  6. [6] J. BROWKIN, A. SCHINZEL, On Sylow 2-subgroups of K2OF for quadratic number fields F, J. Reine Angew. Math., 331 (1982), 104-113. Zbl0493.12013MR83g:12011
  7. [7] J. COATES, p-adic L-functions and Iwasawa's theory in: Algebraic Number Fields (ed. by A. Fröhlich), Academic Press, London, 1977, 269-353. Zbl0393.12027MR57 #276
  8. [8] W.-G. DWYER, E.M. FRIEDLANDER, Algebraic and étale K-theory, Trans. AMS 292, No. 1 (1985), 247-280. Zbl0581.14012MR87h:18013
  9. [9] L. FEDERER, B.H. GROSS (with an appendix by W. Sinnott), Regulators and Iwasawa modules, Invent. Math., 62 (1981), 443-457. Zbl0468.12005MR83f:12005
  10. [10] G. GRAS, J.-F. JAULENT, Sur les corps de nombres réguliers, Math. Z., 202 (1989), 343-365. Zbl0704.11040MR90i:11128
  11. [11] R. GREENBERG, On the Iwasawa invariants of totally real fields, Amer. J. Math., 98, (1976), 263-284. Zbl0334.12013MR53 #5529
  12. [12] J. HURRELBRINK, M. KOLSTER, Tame kernels under relative quadratic extensions and Hilbert symbols, J. Reine Angew. Math., 499 (1998) 145-188. Zbl1044.11100MR2000a:11169
  13. [13] K. IWASAWA, On ℤl-extensions of algebraic number fields, Ann. of Math., 98 (1973), 246-326. Zbl0285.12008MR50 #2120
  14. [14] J.-F. JAULENT, Classes logarithmiques des corps de nombres, J. Théor. Nombres Bordeaux, 6 (1994), 301-325. Zbl0827.11064MR96m:11097
  15. [15] B. KAHN, On the Lichtenbaum-Quillen Conjecture in: Algebraic K-theory and Algebraic Topology (ed. by J.F. Jardine), Nato Proc. Lake Louise 407, Kluwer 1993, 147-166. Zbl0885.19004
  16. [16] B. KAHN, Descente galoisienne et K2 des corps de nombres, K-theory, 7 (1993), 55-100. Zbl0780.12007MR94i:11094
  17. [17] B. KAHN, Deux théorèmes de comparaison en cohomologie étale ; applications, Duke Math. J., 69 (1993) 137-165. Zbl0789.14014MR94g:14009
  18. [18] B. KAHN, The Quillen-Lichtenbaum Conjecture at the prime 2, preprint, 1997. Zbl0885.19004
  19. [19] M. KOLSTER, An idelic approach to the wild kernel, Invent. Math., 103 (1991), 9-24. Zbl0724.11056MR92b:11077
  20. [20] M. KOLSTER, Remarks on étale K-theory and Leopoldt's Conjecture in: Séminaire de Théorie des Nombres, Paris, 1991-1992, Progress in Mathematics 116, Birkhäuser 1993, 37-62. Zbl1043.19500
  21. [21] L. V. KUZ'MIN, The Tate module for algebraic number fields, Math., USSR Izv., 6, No. 2 (1972), 263-321. Zbl0257.12003MR46 #3488
  22. [22] A. S. MERKURJEV and A. A. SUSLIN, The group K3 for a field, Math., USSR Izv., 36, No. 3 (1991), 541-565. Zbl0725.19003
  23. [23] J. MILNOR, Introduction to Algebraic K-Theory, Annals of Mathematics Studies 72, Princeton University Press, Princeton, 1971. Zbl0237.18005MR50 #2304
  24. [24] A. MOVAHHEDI, Sur les p-extensions des corps p-rationnels, Thèse Paris 7, 1988. 
  25. [25] A. MOVAHHEDI et T. NGUYEN QUANG DO, Sur l'arithmétique des corps de nombres p-rationnels in Séminaire de Théorie des nombres, Paris 1988-1989, Birkhäuser 1990, 155-200. Zbl0703.11059
  26. [26] T. NGUYEN QUANG DO, Sur la ℤp-torsion de certains modules galoisiens, Ann. Inst. Fourier, 36-2 (1986), 27-46. Zbl0576.12010MR87m:11112
  27. [27] T. NGUYEN QUANG DO, Sur la cohomologie de certains modules galoisiens p-ramifiés, Théorie des nombres, J.-M. De Koninck et C. Levesque (éd.), C. R. Conf. Int., Quebec/Can. 1987, 740-754 (1989). Zbl0697.12009
  28. [28] T. NGUYEN QUANG DO, K3 et formules de Riemann-Hurwitz p-adiques, K-Theory, 7 (1993), 429-441. Zbl0801.11049MR94m:11139
  29. [29] T. NGUYEN QUANG DO, Analogues supérieurs du noyau sauvage in Séminaire de Théorie des Nombres, Bordeaux, 4 (1992), 263-271. Zbl0783.11042
  30. [30] J. ROGNES, Approximating K*(ℤ) through degree five, K-Theory, 7 (1993), 175-200. Zbl0791.19003MR94i:19001
  31. [31] J. ROGNES, K4 (ℤ) is the trivial group, preprint, 1998. Zbl0937.19005
  32. [32] J. ROGNES, C. WEIBEL, Two-primary Algebraic K-Theory of rings of integers in number fields, J. Amer. Math. Soc., to appear. Zbl0934.19001
  33. [33] P. SCHNEIDER, Über gewisse Galoiskohomologiegruppen, Math. Z., 168 (1979), 181-205. Zbl0421.12024MR81i:12010
  34. [34] J.-P. SERRE, Corps Locaux, Hermann, Paris, 1968. 
  35. [35] J.-P. SERRE, Cohomologie Galoisienne, LNM 5, Springer, 1964. Zbl0128.26303
  36. [36] C. SOULÉ, K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Inv. Math., 55 (1979), 251-295. Zbl0437.12008MR81i:12016
  37. [37] K. WINGBERG, On the product formula in Galois groups, J. Reine Angew. Math., 368 (1986), 172-183. Zbl0608.12011MR88e:11109

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.