Galois co-descent for étale wild kernels and capitulation
Manfred Kolster; Abbas Movahhedi
Annales de l'institut Fourier (2000)
- Volume: 50, Issue: 1, page 35-65
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKolster, Manfred, and Movahhedi, Abbas. "Galois co-descent for étale wild kernels and capitulation." Annales de l'institut Fourier 50.1 (2000): 35-65. <http://eudml.org/doc/75419>.
@article{Kolster2000,
abstract = {Let $F$ be a number field with ring of integers $o_F$. For a fixed prime number $p$ and $i \ge 2$ the étale wild kernels $WK^\{\{\rm \acute\{e\}t\}\}_\{2i-2\}(F)$ are defined as kernels of certain localization maps on the $i$-fold twist of the $p$-adic étale cohomology groups of $\{\rm spec\}\,o_F[\{1\over p\}]$. These groups are finite and coincide for $i=2$ with the $p$-part of the classical wild kernel $WK_2(F)$. They play a role similar to the $p$-part of the $p$-class group of $F$. For class groups, Galois co-descent in a cyclic extension $L/F$ is described by the ambiguous class formula given by genus theory. In this formula, the only factor which is not well mastered is the norm index $[U^\{\prime \}_F:U^\{\prime \}_F \cap N_\{L/F\}(L^*)]$ for the $p$-units $U^\{\prime \}_F$. The aim of this paper is the study of the Galois co-descent for wild kernels: Given a cyclic extension $L/F$ of degree $p$ with Galois group $G$, we show that the transfer map $WK^\{\{\rm \acute\{e\}t\}\}_\{2i-2\}(\{L\})_G \rightarrow WK^\{\{\rm \acute\{e\}t\}\}_\{2i-2\}(\{F\})$ is onto except in a very special case, then we determine its kernel as the cokernel of a certain cup-product with values in a Brauer group. This approach also yields a genus formula, analogous to the one for class groups, comparing the sizes of $WK^\{\{\rm \acute\{e\}t\}\}_\{2i-2\}(L)_G$ and $WK^\{\{\rm \acute\{e\}t\}\}_\{2i-2\}(F)$ where $p$-units $U^\{\prime \}_F$ are replaced by odd $K$-theory groups. When $p$ is odd, we illustrate the method by finding all Galois $p$-extensions of $\{\bf Q\}$, for which the $p$-part of the classical wild kernel is trivial. For $p \ge 5$,they turn out to be the layers of the cyclotomic $\{\bf Z\}_p$-extension of $\{\bf Q\}$.},
author = {Kolster, Manfred, Movahhedi, Abbas},
journal = {Annales de l'institut Fourier},
keywords = {wild kernel; codescent; étale capitulation; étale cohomology; étale -theory; Iwasawa theory; Greenberg's conjecture},
language = {eng},
number = {1},
pages = {35-65},
publisher = {Association des Annales de l'Institut Fourier},
title = {Galois co-descent for étale wild kernels and capitulation},
url = {http://eudml.org/doc/75419},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Kolster, Manfred
AU - Movahhedi, Abbas
TI - Galois co-descent for étale wild kernels and capitulation
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 1
SP - 35
EP - 65
AB - Let $F$ be a number field with ring of integers $o_F$. For a fixed prime number $p$ and $i \ge 2$ the étale wild kernels $WK^{{\rm \acute{e}t}}_{2i-2}(F)$ are defined as kernels of certain localization maps on the $i$-fold twist of the $p$-adic étale cohomology groups of ${\rm spec}\,o_F[{1\over p}]$. These groups are finite and coincide for $i=2$ with the $p$-part of the classical wild kernel $WK_2(F)$. They play a role similar to the $p$-part of the $p$-class group of $F$. For class groups, Galois co-descent in a cyclic extension $L/F$ is described by the ambiguous class formula given by genus theory. In this formula, the only factor which is not well mastered is the norm index $[U^{\prime }_F:U^{\prime }_F \cap N_{L/F}(L^*)]$ for the $p$-units $U^{\prime }_F$. The aim of this paper is the study of the Galois co-descent for wild kernels: Given a cyclic extension $L/F$ of degree $p$ with Galois group $G$, we show that the transfer map $WK^{{\rm \acute{e}t}}_{2i-2}({L})_G \rightarrow WK^{{\rm \acute{e}t}}_{2i-2}({F})$ is onto except in a very special case, then we determine its kernel as the cokernel of a certain cup-product with values in a Brauer group. This approach also yields a genus formula, analogous to the one for class groups, comparing the sizes of $WK^{{\rm \acute{e}t}}_{2i-2}(L)_G$ and $WK^{{\rm \acute{e}t}}_{2i-2}(F)$ where $p$-units $U^{\prime }_F$ are replaced by odd $K$-theory groups. When $p$ is odd, we illustrate the method by finding all Galois $p$-extensions of ${\bf Q}$, for which the $p$-part of the classical wild kernel is trivial. For $p \ge 5$,they turn out to be the layers of the cyclotomic ${\bf Z}_p$-extension of ${\bf Q}$.
LA - eng
KW - wild kernel; codescent; étale capitulation; étale cohomology; étale -theory; Iwasawa theory; Greenberg's conjecture
UR - http://eudml.org/doc/75419
ER -
References
top- [1] J. ASSIM, Sur la p-nullité de certains noyaux de la K-théorie, Thèse, Université de Franche-Comté, 1994.
- [2] J. ASSIM, Codescente en K-théorie étale et corps de nombres, Manuscripta Math., 86 (1995) 499-518. Zbl0835.11043MR96d:11123
- [3] G. BANASZAK, Generalization of the Moore exact sequence and the wild kernel for higher K-groups, Compositio Math., 86 (1993), 281-305. Zbl0778.11066MR94d:19010
- [4] A. BOREL, Cohomologie de SLn et valeurs de fonctions zêta aux points entiers, Ann. Scuola Normale Sup. Pisa, Ser. 4, 4 (1977), 613-636. Zbl0382.57027MR58 #22016
- [5] B. BRAUCKMANN, Étale K-theory and Iwasawa-theory of number fields, Thesis McMaster University, 1993.
- [6] J. BROWKIN, A. SCHINZEL, On Sylow 2-subgroups of K2OF for quadratic number fields F, J. Reine Angew. Math., 331 (1982), 104-113. Zbl0493.12013MR83g:12011
- [7] J. COATES, p-adic L-functions and Iwasawa's theory in: Algebraic Number Fields (ed. by A. Fröhlich), Academic Press, London, 1977, 269-353. Zbl0393.12027MR57 #276
- [8] W.-G. DWYER, E.M. FRIEDLANDER, Algebraic and étale K-theory, Trans. AMS 292, No. 1 (1985), 247-280. Zbl0581.14012MR87h:18013
- [9] L. FEDERER, B.H. GROSS (with an appendix by W. Sinnott), Regulators and Iwasawa modules, Invent. Math., 62 (1981), 443-457. Zbl0468.12005MR83f:12005
- [10] G. GRAS, J.-F. JAULENT, Sur les corps de nombres réguliers, Math. Z., 202 (1989), 343-365. Zbl0704.11040MR90i:11128
- [11] R. GREENBERG, On the Iwasawa invariants of totally real fields, Amer. J. Math., 98, (1976), 263-284. Zbl0334.12013MR53 #5529
- [12] J. HURRELBRINK, M. KOLSTER, Tame kernels under relative quadratic extensions and Hilbert symbols, J. Reine Angew. Math., 499 (1998) 145-188. Zbl1044.11100MR2000a:11169
- [13] K. IWASAWA, On ℤl-extensions of algebraic number fields, Ann. of Math., 98 (1973), 246-326. Zbl0285.12008MR50 #2120
- [14] J.-F. JAULENT, Classes logarithmiques des corps de nombres, J. Théor. Nombres Bordeaux, 6 (1994), 301-325. Zbl0827.11064MR96m:11097
- [15] B. KAHN, On the Lichtenbaum-Quillen Conjecture in: Algebraic K-theory and Algebraic Topology (ed. by J.F. Jardine), Nato Proc. Lake Louise 407, Kluwer 1993, 147-166. Zbl0885.19004
- [16] B. KAHN, Descente galoisienne et K2 des corps de nombres, K-theory, 7 (1993), 55-100. Zbl0780.12007MR94i:11094
- [17] B. KAHN, Deux théorèmes de comparaison en cohomologie étale ; applications, Duke Math. J., 69 (1993) 137-165. Zbl0789.14014MR94g:14009
- [18] B. KAHN, The Quillen-Lichtenbaum Conjecture at the prime 2, preprint, 1997. Zbl0885.19004
- [19] M. KOLSTER, An idelic approach to the wild kernel, Invent. Math., 103 (1991), 9-24. Zbl0724.11056MR92b:11077
- [20] M. KOLSTER, Remarks on étale K-theory and Leopoldt's Conjecture in: Séminaire de Théorie des Nombres, Paris, 1991-1992, Progress in Mathematics 116, Birkhäuser 1993, 37-62. Zbl1043.19500
- [21] L. V. KUZ'MIN, The Tate module for algebraic number fields, Math., USSR Izv., 6, No. 2 (1972), 263-321. Zbl0257.12003MR46 #3488
- [22] A. S. MERKURJEV and A. A. SUSLIN, The group K3 for a field, Math., USSR Izv., 36, No. 3 (1991), 541-565. Zbl0725.19003
- [23] J. MILNOR, Introduction to Algebraic K-Theory, Annals of Mathematics Studies 72, Princeton University Press, Princeton, 1971. Zbl0237.18005MR50 #2304
- [24] A. MOVAHHEDI, Sur les p-extensions des corps p-rationnels, Thèse Paris 7, 1988.
- [25] A. MOVAHHEDI et T. NGUYEN QUANG DO, Sur l'arithmétique des corps de nombres p-rationnels in Séminaire de Théorie des nombres, Paris 1988-1989, Birkhäuser 1990, 155-200. Zbl0703.11059
- [26] T. NGUYEN QUANG DO, Sur la ℤp-torsion de certains modules galoisiens, Ann. Inst. Fourier, 36-2 (1986), 27-46. Zbl0576.12010MR87m:11112
- [27] T. NGUYEN QUANG DO, Sur la cohomologie de certains modules galoisiens p-ramifiés, Théorie des nombres, J.-M. De Koninck et C. Levesque (éd.), C. R. Conf. Int., Quebec/Can. 1987, 740-754 (1989). Zbl0697.12009
- [28] T. NGUYEN QUANG DO, K3 et formules de Riemann-Hurwitz p-adiques, K-Theory, 7 (1993), 429-441. Zbl0801.11049MR94m:11139
- [29] T. NGUYEN QUANG DO, Analogues supérieurs du noyau sauvage in Séminaire de Théorie des Nombres, Bordeaux, 4 (1992), 263-271. Zbl0783.11042
- [30] J. ROGNES, Approximating K*(ℤ) through degree five, K-Theory, 7 (1993), 175-200. Zbl0791.19003MR94i:19001
- [31] J. ROGNES, K4 (ℤ) is the trivial group, preprint, 1998. Zbl0937.19005
- [32] J. ROGNES, C. WEIBEL, Two-primary Algebraic K-Theory of rings of integers in number fields, J. Amer. Math. Soc., to appear. Zbl0934.19001
- [33] P. SCHNEIDER, Über gewisse Galoiskohomologiegruppen, Math. Z., 168 (1979), 181-205. Zbl0421.12024MR81i:12010
- [34] J.-P. SERRE, Corps Locaux, Hermann, Paris, 1968.
- [35] J.-P. SERRE, Cohomologie Galoisienne, LNM 5, Springer, 1964. Zbl0128.26303
- [36] C. SOULÉ, K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Inv. Math., 55 (1979), 251-295. Zbl0437.12008MR81i:12016
- [37] K. WINGBERG, On the product formula in Galois groups, J. Reine Angew. Math., 368 (1986), 172-183. Zbl0608.12011MR88e:11109
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.