Smoothing effect for Schrödinger evolution equation via commutator algebra

Shin-ichi Doi[1]

  • [1] Centre de Mathématiques, Ecole Polytechnique, 91128 Palaiseau Cedex, France, Department of Mathematics, Faculty of Sciences, Kyoto University, Kyoto, Japan

Séminaire Équations aux dérivées partielles (1996-1997)

  • Volume: 1996-1997, page 1-13

How to cite

top

Doi, Shin-ichi. "Smoothing effect for Schrödinger evolution equation via commutator algebra." Séminaire Équations aux dérivées partielles 1996-1997 (1996-1997): 1-13. <http://eudml.org/doc/10925>.

@article{Doi1996-1997,
affiliation = {Centre de Mathématiques, Ecole Polytechnique, 91128 Palaiseau Cedex, France, Department of Mathematics, Faculty of Sciences, Kyoto University, Kyoto, Japan},
author = {Doi, Shin-ichi},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-13},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Smoothing effect for Schrödinger evolution equation via commutator algebra},
url = {http://eudml.org/doc/10925},
volume = {1996-1997},
year = {1996-1997},
}

TY - JOUR
AU - Doi, Shin-ichi
TI - Smoothing effect for Schrödinger evolution equation via commutator algebra
JO - Séminaire Équations aux dérivées partielles
PY - 1996-1997
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1996-1997
SP - 1
EP - 13
LA - eng
UR - http://eudml.org/doc/10925
ER -

References

top
  1. W. Craig, Les moments microlocaux et la regularité des solutions de l’équation de Schrödinger, Seminaire, Equations aux Dérivées Partielles, Ecole Polytechnique (1995-1996), No. 20. Zbl0899.35084
  2. W. Craig, T. Kappeler and W. Strauss, Microlocal dispersive smoothing for the Schrödinger equation, Commun. Pure Applied Math. 48, 769-860 (1995). Zbl0856.35106MR1361016
  3. S. Doi, Smoothing effects of Schrödinger evolution groups on Riemannian manifolds, Duke Math J. 82 (1996), 1-28. Zbl0870.58101MR1387689
  4. S. Doi, in preparation. 
  5. C. Gérard, H. Isozaki, and E. Skibsted, Commutator algebra and resolvent estimates, Advenced Studies in Pure Mathematics 23, 69-82 (1994). Zbl0814.35086MR1275395
  6. L. Kapitanski and I. Rodianski, Regulated smoothing for Schrödinger evolution, International Mathematics Research Notices No 2, 41-54 (1996) Zbl0859.35146MR1383951
  7. L. Kapitanski and Y. Safarov, Dispersive smoothing for Schrödinger equations, Mathematical Research Letters 3, 77-91 (1996) Zbl0860.35016MR1393385
  8. K. Yajima, Smoothness and non-smoothness of the fundamental solution of time dependent Schrödinger equations, Commun. Math. Phys. 181, 605-629 (1996). Zbl0883.35022MR1414302
  9. S. Zelditch, Reconstruction of singularities for solutions of Schrodinger’s equation Commun. Math. Phys. 90, 1-26 (1983). Zbl0554.35031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.