Smoothing effect for Schrödinger evolution equation via commutator algebra
- [1] Centre de Mathématiques, Ecole Polytechnique, 91128 Palaiseau Cedex, France, Department of Mathematics, Faculty of Sciences, Kyoto University, Kyoto, Japan
Séminaire Équations aux dérivées partielles (1996-1997)
- Volume: 1996-1997, page 1-13
Access Full Article
topHow to cite
topDoi, Shin-ichi. "Smoothing effect for Schrödinger evolution equation via commutator algebra." Séminaire Équations aux dérivées partielles 1996-1997 (1996-1997): 1-13. <http://eudml.org/doc/10925>.
@article{Doi1996-1997,
affiliation = {Centre de Mathématiques, Ecole Polytechnique, 91128 Palaiseau Cedex, France, Department of Mathematics, Faculty of Sciences, Kyoto University, Kyoto, Japan},
author = {Doi, Shin-ichi},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-13},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Smoothing effect for Schrödinger evolution equation via commutator algebra},
url = {http://eudml.org/doc/10925},
volume = {1996-1997},
year = {1996-1997},
}
TY - JOUR
AU - Doi, Shin-ichi
TI - Smoothing effect for Schrödinger evolution equation via commutator algebra
JO - Séminaire Équations aux dérivées partielles
PY - 1996-1997
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1996-1997
SP - 1
EP - 13
LA - eng
UR - http://eudml.org/doc/10925
ER -
References
top- W. Craig, Les moments microlocaux et la regularité des solutions de l’équation de Schrödinger, Seminaire, Equations aux Dérivées Partielles, Ecole Polytechnique (1995-1996), No. 20. Zbl0899.35084
- W. Craig, T. Kappeler and W. Strauss, Microlocal dispersive smoothing for the Schrödinger equation, Commun. Pure Applied Math. 48, 769-860 (1995). Zbl0856.35106MR1361016
- S. Doi, Smoothing effects of Schrödinger evolution groups on Riemannian manifolds, Duke Math J. 82 (1996), 1-28. Zbl0870.58101MR1387689
- S. Doi, in preparation.
- C. Gérard, H. Isozaki, and E. Skibsted, Commutator algebra and resolvent estimates, Advenced Studies in Pure Mathematics 23, 69-82 (1994). Zbl0814.35086MR1275395
- L. Kapitanski and I. Rodianski, Regulated smoothing for Schrödinger evolution, International Mathematics Research Notices No 2, 41-54 (1996) Zbl0859.35146MR1383951
- L. Kapitanski and Y. Safarov, Dispersive smoothing for Schrödinger equations, Mathematical Research Letters 3, 77-91 (1996) Zbl0860.35016MR1393385
- K. Yajima, Smoothness and non-smoothness of the fundamental solution of time dependent Schrödinger equations, Commun. Math. Phys. 181, 605-629 (1996). Zbl0883.35022MR1414302
- S. Zelditch, Reconstruction of singularities for solutions of Schrodinger’s equation Commun. Math. Phys. 90, 1-26 (1983). Zbl0554.35031
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.