Les moments microlocaux et la régularité des solutions de l'équation de Schrödinger

W. Craig

Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996)

  • page 1-22

How to cite

top

Craig, W.. "Les moments microlocaux et la régularité des solutions de l'équation de Schrödinger." Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996): 1-22. <http://eudml.org/doc/112132>.

@article{Craig1995-1996,
author = {Craig, W.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Schrödinger equation; moments; regularity of the initial data; Hamiltonian system; pseudodifferential extensions},
language = {fre},
pages = {1-22},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Les moments microlocaux et la régularité des solutions de l'équation de Schrödinger},
url = {http://eudml.org/doc/112132},
year = {1995-1996},
}

TY - JOUR
AU - Craig, W.
TI - Les moments microlocaux et la régularité des solutions de l'équation de Schrödinger
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1995-1996
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 22
LA - fre
KW - Schrödinger equation; moments; regularity of the initial data; Hamiltonian system; pseudodifferential extensions
UR - http://eudml.org/doc/112132
ER -

References

top
  1. [1] R. Beals and C. Fefferman, Spatially inhomogeneous pseudodifferential operators: I, Duke Math. Journal42 (1975), 1-42. Zbl0343.35078MR352747
  2. [2] L. Boutet de Monvel, Propagation des singularités des solutions d'équations analogues à l'équation de Schrödinger, Colloque Int'l Univ. Nice, Lecture Notes in Math.459, Springer Verlag, New YorkHeidelbergBerlin, 1974, pp. 1-14. Zbl0305.35088MR423430
  3. [3] W. Craig, Properties of microlocal smoothing for Schrödinger's equation, Proceedings of the workshop on Spectral theory for the Schrödinger equation, Institute of Mathematical Sciences, Madras., 1995. 
  4. [4] W. Craig, On the microlocal regularity of the Schrödinger kernel, Proceedings of the Toronto summer workshop on PDE, American Mathematical Society, Providence, 1996, (a paraître). Zbl0909.58052MR1479238
  5. [5] W. Craig, T. Kappeler and W. Strauss, Microlocal dispersive smoothing for the Schrödinger equation, Commun. Pure Applied Math.48 (1995), 769-860. Zbl0856.35106MR1361016
  6. [6] L. Hörmander, On the L2 continuity of pseudo - differential operators, Commun. Pure Applied Math.24 (1971), 529-535. Zbl0206.39303MR281060
  7. [7] L. Hörmander, On the existence and regularity of solutions of linear pseudo - differential equations, Enseignment Mathematiques17 (1971), 99-163. Zbl0224.35084MR331124
  8. [8] L. Hörmander, The Weyl calculus of pseudo - differential operators, Commun. Pure Applied Math.32 (1979), 359-443. Zbl0388.47032MR517939
  9. [9] C. Kenig, G. Ponce and L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equation (1996), préprint. Zbl0928.35158MR1660933
  10. [10] R. Lascar, Propagation des singularités des solutions d'équations pseudodifferentielles quasi-homogènes, Annales Inst. Fourier27.2 (1977), 79-123. Zbl0349.35079MR461592

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.