Les moments microlocaux et la régularité des solutions de l'équation de Schrödinger
Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996)
- page 1-22
Access Full Article
topHow to cite
topCraig, W.. "Les moments microlocaux et la régularité des solutions de l'équation de Schrödinger." Séminaire Équations aux dérivées partielles (Polytechnique) (1995-1996): 1-22. <http://eudml.org/doc/112132>.
@article{Craig1995-1996,
author = {Craig, W.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Schrödinger equation; moments; regularity of the initial data; Hamiltonian system; pseudodifferential extensions},
language = {fre},
pages = {1-22},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Les moments microlocaux et la régularité des solutions de l'équation de Schrödinger},
url = {http://eudml.org/doc/112132},
year = {1995-1996},
}
TY - JOUR
AU - Craig, W.
TI - Les moments microlocaux et la régularité des solutions de l'équation de Schrödinger
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1995-1996
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 22
LA - fre
KW - Schrödinger equation; moments; regularity of the initial data; Hamiltonian system; pseudodifferential extensions
UR - http://eudml.org/doc/112132
ER -
References
top- [1] R. Beals and C. Fefferman, Spatially inhomogeneous pseudodifferential operators: I, Duke Math. Journal42 (1975), 1-42. Zbl0343.35078MR352747
- [2] L. Boutet de Monvel, Propagation des singularités des solutions d'équations analogues à l'équation de Schrödinger, Colloque Int'l Univ. Nice, Lecture Notes in Math.459, Springer Verlag, New YorkHeidelbergBerlin, 1974, pp. 1-14. Zbl0305.35088MR423430
- [3] W. Craig, Properties of microlocal smoothing for Schrödinger's equation, Proceedings of the workshop on Spectral theory for the Schrödinger equation, Institute of Mathematical Sciences, Madras., 1995.
- [4] W. Craig, On the microlocal regularity of the Schrödinger kernel, Proceedings of the Toronto summer workshop on PDE, American Mathematical Society, Providence, 1996, (a paraître). Zbl0909.58052MR1479238
- [5] W. Craig, T. Kappeler and W. Strauss, Microlocal dispersive smoothing for the Schrödinger equation, Commun. Pure Applied Math.48 (1995), 769-860. Zbl0856.35106MR1361016
- [6] L. Hörmander, On the L2 continuity of pseudo - differential operators, Commun. Pure Applied Math.24 (1971), 529-535. Zbl0206.39303MR281060
- [7] L. Hörmander, On the existence and regularity of solutions of linear pseudo - differential equations, Enseignment Mathematiques17 (1971), 99-163. Zbl0224.35084MR331124
- [8] L. Hörmander, The Weyl calculus of pseudo - differential operators, Commun. Pure Applied Math.32 (1979), 359-443. Zbl0388.47032MR517939
- [9] C. Kenig, G. Ponce and L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equation (1996), préprint. Zbl0928.35158MR1660933
- [10] R. Lascar, Propagation des singularités des solutions d'équations pseudodifferentielles quasi-homogènes, Annales Inst. Fourier27.2 (1977), 79-123. Zbl0349.35079MR461592
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.