On the Ginzburg-Landau and related equations

Yu N. Ovchinnikov[1]; Israel Michael Sigal[2]

  • [1] L.D. Laudau Institute, Moscow
  • [2] Department of Mathematics, University of Toronto, Toronto, Ontario M5S 3G3 Canada

Séminaire Équations aux dérivées partielles (1997-1998)

  • Volume: 1997-1998, page 1-13

Abstract

top
We describe qualitative behaviour of solutions of the Gross-Pitaevskii equation in 2D in terms of motion of vortices and radiation. To this end we introduce the notion of the intervortex energy. We develop a rather general adiabatic theory of motion of well separated vortices and present the method of effective action which gives a fairly straightforward justification of this theory. Finally we mention briefly two special situations where we are able to obtain rather detailed picture of the vortex dynamics. Our approach is rather general and is applicable to a wide class of evolution nonlinear equation which exhibit localized, stable static solutions. It yields description of general time-dependent solutions in terms of dynamics of those static solutions “glued” together.

How to cite

top

Ovchinnikov, Yu N., and Sigal, Israel Michael. "On the Ginzburg-Landau and related equations." Séminaire Équations aux dérivées partielles 1997-1998 (1997-1998): 1-13. <http://eudml.org/doc/10948>.

@article{Ovchinnikov1997-1998,
abstract = {We describe qualitative behaviour of solutions of the Gross-Pitaevskii equation in 2D in terms of motion of vortices and radiation. To this end we introduce the notion of the intervortex energy. We develop a rather general adiabatic theory of motion of well separated vortices and present the method of effective action which gives a fairly straightforward justification of this theory. Finally we mention briefly two special situations where we are able to obtain rather detailed picture of the vortex dynamics. Our approach is rather general and is applicable to a wide class of evolution nonlinear equation which exhibit localized, stable static solutions. It yields description of general time-dependent solutions in terms of dynamics of those static solutions “glued” together.},
affiliation = {L.D. Laudau Institute, Moscow; Department of Mathematics, University of Toronto, Toronto, Ontario M5S 3G3 Canada},
author = {Ovchinnikov, Yu N., Sigal, Israel Michael},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {time-dependent Ginzburg-Landau equation; Gross-Pitaevskii equation; intervortex energy; vortex dynamics; stable static solutions},
language = {eng},
pages = {1-13},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {On the Ginzburg-Landau and related equations},
url = {http://eudml.org/doc/10948},
volume = {1997-1998},
year = {1997-1998},
}

TY - JOUR
AU - Ovchinnikov, Yu N.
AU - Sigal, Israel Michael
TI - On the Ginzburg-Landau and related equations
JO - Séminaire Équations aux dérivées partielles
PY - 1997-1998
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1997-1998
SP - 1
EP - 13
AB - We describe qualitative behaviour of solutions of the Gross-Pitaevskii equation in 2D in terms of motion of vortices and radiation. To this end we introduce the notion of the intervortex energy. We develop a rather general adiabatic theory of motion of well separated vortices and present the method of effective action which gives a fairly straightforward justification of this theory. Finally we mention briefly two special situations where we are able to obtain rather detailed picture of the vortex dynamics. Our approach is rather general and is applicable to a wide class of evolution nonlinear equation which exhibit localized, stable static solutions. It yields description of general time-dependent solutions in terms of dynamics of those static solutions “glued” together.
LA - eng
KW - time-dependent Ginzburg-Landau equation; Gross-Pitaevskii equation; intervortex energy; vortex dynamics; stable static solutions
UR - http://eudml.org/doc/10948
ER -

References

top
  1. F. Bethuel, H. Brezis and F. Hélein (1994), Ginzburg-Landau Vortices, Birkhäuser, Basel. Zbl0802.35142MR1269538
  2. F. Bethuel and J.C. Saut (1997), Travelling waves for the Gross-Pitrevskii equation, preprint. 
  3. S. Chanillo and M. Kiesling (1995), Symmetry of solutions of Ginzburg-Landau equations, Compt. Rend. Acad. Sci. Paris, t. 327, Série I, 1023–1026. Zbl0843.35004MR1360565
  4. Y. Chen, C. Elliot and T. Qui (1994), Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation, Proc. Royal Soc. Edinburgh124A, 1068-1075. Zbl0816.34003MR1313190
  5. J.E. Colliander and R.L. Jerrard (1998), Vortex dynamics for the Ginzburg-Landau-Schrödinger equation, preprint, MSRI. Zbl0914.35128MR1623410
  6. J. Creswick and N. Morrison (1980), On the dynamics of quantum vortices, Phys. Lett. A76, 267. MR595647
  7. W. E (1994), Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, Physica D77, 383-404. Zbl0814.34039MR1297726
  8. P. Fife and L.A. Peletier (1996), On the location of defects in stationary solutions of the Ginzburg-Landau equations on R 2 , Quart. Appl. Math.54, 85-104. Zbl0848.35042MR1373840
  9. J. Fröhlich and M. Struwe (1990), Variational problems on vector bundles, Commun. Math. Phys.131, 431-464. Zbl0714.58012MR1065892
  10. V.L. Ginzburg and L.P. Pitaevskii (1958), On the theory of superfluidity, Sov. Phys. JETP7, 585. MR105929
  11. E.P. Gross (1961), Nuovo Cimento A20, 454. Zbl0100.42403MR128907
  12. E. Gross (1966), Dynamics of interacting bosons, in Physics of Many Particle Systems, ed. E. Meeron, Gordon and Breach, NY, 268. 
  13. S. Gustafson (1997a), Stability of vortex solutions of the Ginzburg-Landau heat equation, in PDE’s and their applications (L. Seco et al, eds), Proceeding of Conference in PDE’s, Toronto June 1995. Zbl0884.35054
  14. S. Gustafson (1997b), Symmetric solutions of hte Ginzburg-Landau in all dimensions, IMRN, 16, 807-816. Zbl0883.35041MR1472346
  15. S. Gustafson and I.M. Sigal (1998), Existence and stability of magnetic vortices. preprint (Toronto). 
  16. P. Hagan (1982), Spiral waves in reaction diffusion equations, SIAM J. Applied Math.42, 762–786. Zbl0507.35007MR665385
  17. M. Hervé, R. Hervé (1994), Étude qualitative des solutions réeles d’une équation différentielle liée a l’équation de Ginzburg-Landau, Ann. Inst. Henri Poincaré, Analyse non linéaire11, 427-440. Zbl0836.34090
  18. S.V. Iordanskii and A.V. Smirnov (1978), JETP Lett.27, 535. 
  19. A. Jaffe and C. Taubes (1980), Vortices and Monopoles, Birkhäuser. Zbl0457.53034MR614447
  20. C. Jones, S.J. Putterman and P.M. Roberts (1986), Motion of Bose condensation V, J. Phys. A19, 2991–3011. 
  21. C.A. Jones and P.M. Roberts (1982), J. Phys. A: Math. Gen.15, 2599–2619. 
  22. E.A. Kuznetzov and J.J. Rasmussen (1995), Instability of two dimensional solitons and vortices in defocusing media, Phys. Rev. E51, 5, 4479–4484. 
  23. E.M. Lieb and M. Loss (1994), Symmetry of the Ginzburg-Landau minimizers in a disc, Math. Res. Lett.1, 701–715. Zbl0842.49014MR1306015
  24. F.-H. Lin and J.X. Xin (1998), On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation, preprint. Zbl0920.35145MR1674000
  25. N.S. Manton (1981), A remark on scattering of BPS monopoles, Phys. Letters110B, N1, 54–56. Zbl1190.81087MR647883
  26. P. Mironescu (1995), On the stability of radial solutions of the Ginzburg-Landau equation, J. Funct. Anal.130, 334–344. Zbl0839.35011MR1335384
  27. P. Mironescu (1996), Les minimiseurs locaux pour l’équation de Ginzburg-Landau sont à symmétrie radiale, preprint. 
  28. J. Neu (1990), Vortices in complex scalar fields, Physica D43, 385–406. Zbl0711.35024MR1067918
  29. L. Onsager (1949), Statistical hydrodynamics, Nuovo Cimento V-VI, Suppl. 2, 279. MR36116
  30. Yu.N. Ovchinnikov and I.M. Sigal (1997a), Ginzburg-Landau equation I. General discussion, in P.D.E.’s and their Applications (L. Seco et al., eds.), Proceedings of Conference in PDE’s, Toronto, June 1995. Zbl0912.35078
  31. Yu.N. Ovchinnikov and I.M. Sigal (1997b), The Ginzburg-Landau equation II. The energy of vortex configurations, preprint. 
  32. Yu.N. Ovchinnikov and I.M. Sigal (1998a), The Ginzburg-Landau equation III. Vortex dynamics, Nonlinearity (to appear). Zbl0990.35122MR1644389
  33. Yu.N. Ovchinnikov and I.M. Sigal (1998b), Symmetry breaking in the Ginzburg-Landau equation, preprint. 
  34. Yu.N. Ovchinnikov and I.M. Sigal (1998c), Long-time behaviour of Ginzburg-Landau vortices, Nonlinearity (to appear). Zbl0910.35116MR1644393
  35. Yu.N. Ovchinnikov and I.M. Sigal (1998d), Break up and creation of vorticies, in preparation. 
  36. L.M. Pismen (1994), Structure and dynamics of defects in 2D complex vector field, Physica D73, 244-258. Zbl0812.58022MR1277608
  37. L.M. Pismen and A. Nepomnyashchy (1993), Stability of vortex rings in a model of superflow, Physica D69, 163–171. Zbl0791.35128MR1245660
  38. L.P. Pitaevskii (1961), Pis’ma Zh. Eksp. Teor. Fix.77, 988 (Sov. Phys. JETP13, 451). 
  39. A.S. Schwarz (1993), Topology for physicists, Springer-Verlag. Zbl0858.55001MR1301777
  40. I. Shafrir (1994), Remarks on solutions of - Δ u = ( 1 - | u | 2 ) u in 2 , C.R. Acad. Sci. Paris, t. 318, Série I, 327–331. Zbl0806.35030MR1267609
  41. D. Stuart (1994), Comm. Math. Phys.159, 51. Zbl0807.35141MR1257242
  42. G.B. Whitham (1974), Linear and Nonlinear Waves, John Wiley & Sons. Zbl0373.76001MR483954

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.