The Cauchy problem for systems through the normal form of systems and theory of weighted determinant

Waichiro Matsumoto[1]

  • [1] Department of Applied Mathematics and Informatics, Faculty of Science and Technology, Ryukoku University, Seta, 520-2194 Ohtsu, JAPAN

Séminaire Équations aux dérivées partielles (1998-1999)

  • Volume: 1998-1999, page 1-29

Abstract

top
The author propose what is the principal part of linear systems of partial differential equations in the Cauchy problem through the normal form of systems in the meromorphic formal symbol class and the theory of weighted determinant. As applications, he choose the necessary and sufficient conditions for the analytic well-posedness ( Cauchy-Kowalevskaya theorem ) and C well-posedness (Levi condition).

How to cite

top

Matsumoto, Waichiro. "The Cauchy problem for systems through the normal form of systems and theory of weighted determinant." Séminaire Équations aux dérivées partielles 1998-1999 (1998-1999): 1-29. <http://eudml.org/doc/10968>.

@article{Matsumoto1998-1999,
abstract = {The author propose what is the principal part of linear systems of partial differential equations in the Cauchy problem through the normal form of systems in the meromorphic formal symbol class and the theory of weighted determinant. As applications, he choose the necessary and sufficient conditions for the analytic well-posedness ( Cauchy-Kowalevskaya theorem ) and $C^\infty $ well-posedness (Levi condition).},
affiliation = {Department of Applied Mathematics and Informatics, Faculty of Science and Technology, Ryukoku University, Seta, 520-2194 Ohtsu, JAPAN},
author = {Matsumoto, Waichiro},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {normal form of systems; p-determinant of matrix of pseudo-differential operators; p-evolution; the Cauchy-Kowalevskaya theorem for systems; $C^\infty $ well-posedness for systems; Levi condition; analytic well-posedness; well-posedness; Cauchy-Kowalevskaya theorem},
language = {eng},
pages = {1-29},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {The Cauchy problem for systems through the normal form of systems and theory of weighted determinant},
url = {http://eudml.org/doc/10968},
volume = {1998-1999},
year = {1998-1999},
}

TY - JOUR
AU - Matsumoto, Waichiro
TI - The Cauchy problem for systems through the normal form of systems and theory of weighted determinant
JO - Séminaire Équations aux dérivées partielles
PY - 1998-1999
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1998-1999
SP - 1
EP - 29
AB - The author propose what is the principal part of linear systems of partial differential equations in the Cauchy problem through the normal form of systems in the meromorphic formal symbol class and the theory of weighted determinant. As applications, he choose the necessary and sufficient conditions for the analytic well-posedness ( Cauchy-Kowalevskaya theorem ) and $C^\infty $ well-posedness (Levi condition).
LA - eng
KW - normal form of systems; p-determinant of matrix of pseudo-differential operators; p-evolution; the Cauchy-Kowalevskaya theorem for systems; $C^\infty $ well-posedness for systems; Levi condition; analytic well-posedness; well-posedness; Cauchy-Kowalevskaya theorem
UR - http://eudml.org/doc/10968
ER -

References

top
  1. K.Adjamagbo; Problème de Cauchy non caractéristique pour le système général d équations différentielles linéaires, Compt. Rendus Acad. Sciences Paris, 294, Série I, (1982), 159-162. Zbl0491.34001MR651434
  2. —; Panorama de la théorie des déterminants sur un anneau non commutatif, Bull.Sc.Math., 2e Série, 117, (1993), 401-420. Zbl0807.16031MR1228952
  3. —; Les fondements de la théorie des déterminants sur un domaine de Ore, Thèse Doc. État, Univ. Paris VI (1991). 
  4. V.I.Arnold; Matrices depending on parameters, Uspehi Mat Nauk, 26-2 (158) (1971), 101-114, (English translation) Russ. Math. Surveys, 26-2(1971), 29-43. Zbl0259.15011MR301242
  5. E.Artin; Geometric Algebra, Chap. IV, 1, Interscience Publishers (1957). Zbl0077.02101MR82463
  6. L.Boutet de Monvel; Opérateurs pseudo-différentiels analytiques et opérateurs d ordre infini , Ann.Inst.Fourier, Grenoble, 22 (1972), 229-268. Zbl0235.47029MR341189
  7. L.Boutet de Monvel and P.Krée; Pseudo-differential operators and Gevrey classes, Ann.Inst.Fourier, Grenoble, 17 (1967), 295-323. Zbl0195.14403MR226170
  8. J.Chazarin; Opérateurs hyperboliques à caractéristiques de multiplicité constante, Ann.Inst.Fourier Grenoble 24 (1974), 173-202. Zbl0274.35045MR390512
  9. A.D’Agnolo and G.Taglialatela; Sato-Kashiwara determinant and Levi conditions for systems, ( Preliminary version). Zbl0969.35502
  10. A.D’Agnolo and F.Tonin; Cauchy problem for hyperbolic D-modules with regular singularities, Pacific Jour. Math., 184 (1998), 1-22. Zbl0934.58021
  11. Y.Demay; Paramétrix pour des systèmes hyperboliques du premier ordre à multiplicité constante, Jour.Math.Pure Appl., 56 (1977), 393-422. Zbl0379.35068MR466986
  12. J.Dieudonné; Les déterminants sur un corps non commutatif, Bull.Soc.Math.France, 71 (1943), 27-45. Zbl0028.33904MR12273
  13. H.Flaschka and G.Strang; The correctness of the Cauchy problem, Adv.Math. 6 (1971), 347-379. Zbl0213.37304MR279425
  14. G.Hufford; On the characteristic matrix of a matrix of differential operators, Jour. Diff. Eq. 1 (1965), 27-38. Zbl0143.13302MR176228
  15. M.Kashiwara; Algebraic study of systems of partial differential equations, Mém.Soc.Math.France, 63 (1995), ( Translation of M.Kashiwara’s thesis in 1971 written in Japanese to English by A.D Agnolo and J.-P.Schneiders ). Zbl0877.35003
  16. S.von Kowalevsky; Zur Theorie der partiellen Differentialgleichungen, Jour.reine angew.Math., 80 (1875), 1-32. Zbl07.0201.01
  17. H.Kumano-go; A calculus of Fourier integral operators on n and the fundamental solution for an operator of hyperbolic type, Comm.Part.Diff.Eq. 1 (1976), 1-44. Zbl0331.42012MR397482
  18. —; Pseudo-Differential Operators , Chap.10, MIT Press (1981). 
  19. ; J.Leray; Uniformisation de la solution du problème linéaire analytique de Cauchy près de la variété qui porte les données de Cauchy, ( Problème de Cauchy I ), Bull.Soc.Math.France, 85 (1957), 389-429. Zbl0108.09501MR103328
  20. E.E.Levi; Caracteristiche multiple e problema di Cauchy, Ann.Math.Pura Appl., Ser.III, 16 (1909), 161-201. Zbl40.0415.02
  21. W.Matsumoto; On the conditions for the hyperbolicity of systems with double characteristics, I, Jour.Math.Kyoto Univ. 21 (1981), 47-84. Zbl0471.35052MR606312
  22. —; On the conditions for the hyperbolicity of systems with double characteristics, II, Jour.Math.Kyoto Univ. 21 (1981), 251-271. Zbl0471.35052
  23. —; Sur l’espace de données admissibles dans le problème de Cauchy, C.R.Acad.Sc.Paris, Série I 292 (1981), 621-623. Zbl0476.35052
  24. —; Theory of pseudo-differential operators of ultradifferentiable class, Jour.Math.Kyoto Univ., 27 (1987), 453-500. Zbl0651.35088
  25. —; Normal form of systems of partial differential and pseudo-differential operators in formal symbol classes , Jour.Math.Kyoto Univ. 34 (1994), 15-40. Zbl0844.35147MR1263858
  26. —; Levi condition for general systems, Physics on Manifolds, Proc.Intern.Colloq., Honour Y.Choquet-Bruhat, 1992, Ed. M.Flato et al. Kluwer Academic Publishers (1994), 303-307. Zbl0837.35084MR1267082
  27. —; Direct proof of the perfect block diagonalization of systems of pseudo-differential operators in the ultradifferentiable classes, ( presented to Jour.Math.Kyoto Univ. ). Zbl0979.35152
  28. —; On the Cauchy Kowalevskaya theorem of Nagumo type for systems , ( to appear ). Zbl1058.35004
  29. —; Levi condition for systems with characteristics of constant multiplicity, ( to appear ). 
  30. W.Matsumoto and M.Murai; On the necessary and sufficient condition for the Cauchy-Kowalevskaya theorem of Nagumo type - one of the simplest cases -, ( to appear ). Zbl1058.35004
  31. W.Matsumoto and H.Yamahara; On the Cauchy-Kowalevskaya theorem for systems, Proc.Japan Acad., 67, Ser.A (1991), 181-185. Zbl0797.35004MR1120513
  32. —; The Cauchy-Kowalevskaya theorem for systems, ( to appear ). Zbl0797.35004
  33. M.Miyake; On Cauchy-Kowalevski’s theorem for general systems, Publ.RIMS, Kyoto Univ. 15 (1979), 315-337. Zbl0426.35007
  34. —; Reduction to the first order systems of the Kowalevskian systems in the sense of Volevič, Publ.RIMS, Kyoto Univ. 15 (1979), 339-355. Zbl0425.35002MR555659
  35. S.Mizohata; Some remarks on the Cauchy problem, Jour.Math.Kyoto Univ. 1 (1961), 109-127. Zbl0104.31903MR170112
  36. —; On Kowalevskian systems, Uspehi Mat.Nauk. 29 (1974), translated in English: Russ.Math.Survey 29 (1974), 223-235. 
  37. —; On Cauchy-kowalevski’s theorem; A necessary condition, Publ.RIMS, Kyoto Univ. 10 (1975), 509-519. Zbl0315.35003
  38. —; On the Cauchy- Kowalevski theorem, Math.Anal.Appl., Part B, Adv.Math.Supplem.Studies 7B (1981), 615-652. Zbl0471.35002
  39. —; On the hyperbolicity in the domain of real analytic functions and Gevrey classes, Hokkaido Math.Jour. 12 (1983), 298-310. Zbl0534.35012MR719970
  40. S.Mizohata and Y.Ohya; Sur la condition de E.E.levi concernant des équations hyperboliques, Pub.RIMS Kyoto Univ. Ser.A 4 (1968), 511-526. Zbl0202.37401MR276606
  41. —; Sur la condition d’hyperbolicité pour les équations à caractéristiques multiples, II Japan Jour.Math. 40 (1971), 63-104. Zbl0231.35048
  42. M.Nagumo; Über des Anfangswertproblem partieller Differentialgleichungen Japan Jour.Math. 18 (1941-43), 41-47. Zbl0061.21107MR15186
  43. T.Nishitani; On the Lax-Mizohata theorem in the analytic and Gevrey classes, Jour.Math.Kyoto Univ. 18 (1978), 509-521. Zbl0402.35093MR509495
  44. O.Ore; Linear equations in non-commutative fields, Ann.Math. 32 (1931), 463-477. Zbl0001.26601MR1503010
  45. V.M.Petkov; On the Cauchy problem for first-order hyperbolic systems with multiple characteristics Dokl.Acad.Nauk.SSSR, 209 (1973), 795-797, ( English translation ) Soviet Math.Dokl. 14 (1973), 1-13. Zbl0284.35044MR324227
  46. —; Le problème de Cauchy et la propagation des singularités pour une classe des systèmes hyperboliques non symmétrizables, École Polyt. Centre Math. Sémin. G-L-S, (1974-1975) éxp. V. Zbl0309.35048MR402289
  47. —; Microlocal forms for hyperbolic systems, Math.Nachr. 93 (1979), 117-131. Zbl0433.35045MR579846
  48. —; The Parametrix of the Cauchy problem for nonsymmetrizable hyperbolic systems with characteristics of constant multiplicity, Trans.Moscow Math.Soc. 37 (1980), 1-47. Zbl0453.35054
  49. I.G.Petrowsky; Über des Cauchysche Probleme für Systeme von partiellen Differentialgleichungen, Mat.Sbornik 2:5 (1937), 815-870, ( English transl. ) I.G.Petrowsky Selected Works, Part 1, Systems PDE and Alg.Geom., ed. O.A.Oleinik, (1996), Gordon Breach Publishers, 42-101. 
  50. M.Sato and M.Kashiwara; The determinant of matrices of pseudo-differential operators, Proc.Japan Acad. 51, Ser.A, (1975), 17-19. Zbl0337.35067MR391189
  51. G.Taglialatela and J.Vaillant; Conditions invariantes d’hyperbolicité des systèmes et réduction des systèmes, Bull.Sci.Math., 120 (1996), 19-97. Zbl0847.35081
  52. J.Vaillant; Caractéristiques multiples et bicaractéristiques des systèmes d’équations aux dérivées partielles linéaires et à coefficients constantes, Ann.Inst.Fourier, Grenoble, 51 (1965), 225-311. Zbl0139.05304
  53. —; Conditions d’hyperbolicité des systèmes, C.R.Acad.Sci.Paris, 313 (1991), 227-230. Zbl0755.35064
  54. —; Conditions invariantes pour un système du type conditions de Levi, Physics on Manifolds, Proc.Intern.Colloq., Honour Y.Choquet-Bruhat, 1992, Ed. M.Flato et al. Kluwer Academic Publishers (1994), Zbl0836.35086MR1267083

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.