Multiple commutator estimates and resolvent smoothness in quantum scattering theory

Arne Jensen; Éric Mourre; Peter Perry

Annales de l'I.H.P. Physique théorique (1984)

  • Volume: 41, Issue: 2, page 207-225
  • ISSN: 0246-0211

How to cite

top

Jensen, Arne, Mourre, Éric, and Perry, Peter. "Multiple commutator estimates and resolvent smoothness in quantum scattering theory." Annales de l'I.H.P. Physique théorique 41.2 (1984): 207-225. <http://eudml.org/doc/76257>.

@article{Jensen1984,
author = {Jensen, Arne, Mourre, Éric, Perry, Peter},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {selfadjoint operator; conjugate operator; spectral measure; multiple commutators; abstract scattering theory; completeness of modified wave operators for certain Schrödinger operators with long range potentials},
language = {eng},
number = {2},
pages = {207-225},
publisher = {Gauthier-Villars},
title = {Multiple commutator estimates and resolvent smoothness in quantum scattering theory},
url = {http://eudml.org/doc/76257},
volume = {41},
year = {1984},
}

TY - JOUR
AU - Jensen, Arne
AU - Mourre, Éric
AU - Perry, Peter
TI - Multiple commutator estimates and resolvent smoothness in quantum scattering theory
JO - Annales de l'I.H.P. Physique théorique
PY - 1984
PB - Gauthier-Villars
VL - 41
IS - 2
SP - 207
EP - 225
LA - eng
KW - selfadjoint operator; conjugate operator; spectral measure; multiple commutators; abstract scattering theory; completeness of modified wave operators for certain Schrödinger operators with long range potentials
UR - http://eudml.org/doc/76257
ER -

References

top
  1. [1] S. Agmon, Some new results in spectral and scattering theory of differential operators on L2(Rn). Séminaire Goulaouic-Schwartz, 1978/1979. Exp. No. 2, École Polytech., Palaiseau, 1979. Zbl0406.35052MR557513
  2. [2] J. Aguilar, J.M. Combes, Comm. Math. Phys., t. 22, 1971, p. 269-279. Zbl0219.47011MR345551
  3. [3] E. Balslev, J.M. Combes, Comm. Math. Phys., t. 22, 1971, p. 280-294. Zbl0219.47005MR345552
  4. [4] J.D. Dollard, J. Math. Phys., t. 5, 1964, p. 729-738. MR163620
  5. [5] V. Enss, Ann. Phys. (N. Y.), t. 119, 1979, p. 117-132. Addendum, Preprint, Bielefeld, 1979. MR535624
  6. [6] L. Hormander, Math. Z., t. 146, 1976, p. 69-91. Zbl0319.35059MR393884
  7. [7] T. Ikebe, J. Funct. Anal., t. 20, 1975, p. 158-177. Zbl0315.35067
  8. [8] T. Ikebe, Publ. Res. Inst. Math. Sci., t. 11, 1976, p. 551-558. Zbl0345.35032MR440213
  9. [9] T. Ikebe, H. Isozaki, Publ. Res. Inst. Math. Sci., t. 15, 1979, p. 679-718. Zbl0432.35061MR566076
  10. [10] T. Ikebe, H. Isozaki, Integral Equations Operator Theory, t. 5, 1982, p. 18-49. MR646878
  11. [11] H. Isozaki, Publ. Res. Inst. Math. Sci., t. 13, 1977, p. 589-626. Zbl0435.47011MR479087
  12. [12] H. Isozaki, H. Kitada, Private Communication. 
  13. [13] A. Jensen, T. Kato, Duke Math. J., t. 46, 1979, p. 583-611. Zbl0448.35080MR544248
  14. [14] A. Jensen, Comm. Math. Phys., t. 82, 1981, p. 435-456. Zbl0483.47031MR641772
  15. [15] A. Jensen, Lett. Math. Phys., t. 7, 1983, p. 137-143. Zbl0517.47010MR708436
  16. [16] T. Kato, Math. Ann., t. 162, 1966, p. 258-279. Zbl0139.31203MR190801
  17. [17] T. Kato, Studia Math., t. 31, 1968, p. 535-546. Zbl0215.48802MR234314
  18. [18] H. Kitada, Proc. Japan Acad. Ser. A Math. Sci., t. 52, 1976, p. 409-412. Zbl0358.35024MR422911
  19. [19] H. Kitada, J. Math. Soc. Japan, t. 29, 1977, p. 665-691. Zbl0356.47006MR634802
  20. [20] H. Kitada, J. Math. Soc. Japan, t. 30, 1978, p. 603-632. Zbl0388.35055MR634803
  21. [21] R. Lavine, Comm. Math. Phys., t. 20, 1971, p. 301-323. Zbl0207.13706MR293945
  22. [22] R. Lavine, J. Math. Phys., t. 14, 1973, p. 376-379. Zbl0269.47005
  23. [23] E. Mourre, Comm. Math. Phys., t. 68, 1979, p. 91-94. Zbl0429.47006MR539739
  24. [24] E. Mourre, Comm. Math. Phys., t. 78, 1981, p. 391-408. Zbl0489.47010MR603501
  25. [25] E. Mourre, Algebraic approach to some propagation properties of the Schrödinger equation. In: Mathematical Problems of Theoretical Physics, ed. R. Schrader, R. Seiler, P. A. Uhlenbrock. Lecture Notes in Physics, No. 153, Springer Verlag, Berlin, etc., 1981. 
  26. [26] E. Mourre, Comm. Math. Phys., t. 91, 1983, p. 279-300. Zbl0543.47041MR723552
  27. [27] E. Mourre, Preprint, CPT-CNRS, Marseille, 1982. 
  28. [28] P.L. Muthuramalingam, K.B. Sinha, Preprint, Indian Statistical Institute, 1983. 
  29. [29] P. Perry, Comm. Math. Phys., t. 81, 1981, p. 243-259. Zbl0471.47007MR632760
  30. [30] P. Perry, I. Sigal, B. Simon, Ann. Math., t. 114, 1981, p. 519-567. Zbl0477.35069MR634428
  31. [31] C.R. Putnam, Commutation Properties of Hilbert Space Operators and Related Topics. Springer Verlag, Berlin, etc., 1967. Zbl0149.35104MR217618
  32. [32] M. Reed, B. Simon, Methods of Modern Mathematical Physics. III. Scattering Theory. Academic Press, New York, 1979. Zbl0405.47007MR529429
  33. [33] Y. Saito, Osaka J. Math., t. 14, 1979, p. 37-53. Zbl0356.35020MR442505
  34. [34] Y. Saito, Spectral representations for Schrödinger operators with long-range potentials. Lecture Notes in Mathematics, Vol. 727, Springer Verlag, Berlin, etc., 1979. Zbl0414.47012MR540891

Citations in EuDML Documents

top
  1. Jan Dereziński, Fermi Golden Rule, Feshbach Method and embedded point spectrum
  2. Michael Melgaard, Quantum scattering near the lowest Landau threshold for a Schrödinger operator with a constant magnetic field
  3. Arne Jensen, Scattering theory for hamiltonians with Stark effect
  4. Xue Ping Wang, Asymptotic expansion in time of the Schrödinger group on conical manifolds
  5. D. Robert, Asymptotique de la phase de diffusion à haute énergie pour des perturbations du laplacien
  6. T. Ozawa, Local decay estimates for Schrödinger operators with long range potentials
  7. Jean-François Bony, Dietrich Häfner, Local energy decay for several evolution equations on asymptotically euclidean manifolds
  8. D. Robert, Asymptotique de la phase de diffusion à haute énergie pour des perturbations du second ordre du laplacien

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.