Multiple commutator estimates and resolvent smoothness in quantum scattering theory
Arne Jensen; Éric Mourre; Peter Perry
Annales de l'I.H.P. Physique théorique (1984)
- Volume: 41, Issue: 2, page 207-225
- ISSN: 0246-0211
Access Full Article
topHow to cite
topJensen, Arne, Mourre, Éric, and Perry, Peter. "Multiple commutator estimates and resolvent smoothness in quantum scattering theory." Annales de l'I.H.P. Physique théorique 41.2 (1984): 207-225. <http://eudml.org/doc/76257>.
@article{Jensen1984,
author = {Jensen, Arne, Mourre, Éric, Perry, Peter},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {selfadjoint operator; conjugate operator; spectral measure; multiple commutators; abstract scattering theory; completeness of modified wave operators for certain Schrödinger operators with long range potentials},
language = {eng},
number = {2},
pages = {207-225},
publisher = {Gauthier-Villars},
title = {Multiple commutator estimates and resolvent smoothness in quantum scattering theory},
url = {http://eudml.org/doc/76257},
volume = {41},
year = {1984},
}
TY - JOUR
AU - Jensen, Arne
AU - Mourre, Éric
AU - Perry, Peter
TI - Multiple commutator estimates and resolvent smoothness in quantum scattering theory
JO - Annales de l'I.H.P. Physique théorique
PY - 1984
PB - Gauthier-Villars
VL - 41
IS - 2
SP - 207
EP - 225
LA - eng
KW - selfadjoint operator; conjugate operator; spectral measure; multiple commutators; abstract scattering theory; completeness of modified wave operators for certain Schrödinger operators with long range potentials
UR - http://eudml.org/doc/76257
ER -
References
top- [1] S. Agmon, Some new results in spectral and scattering theory of differential operators on L2(Rn). Séminaire Goulaouic-Schwartz, 1978/1979. Exp. No. 2, École Polytech., Palaiseau, 1979. Zbl0406.35052MR557513
- [2] J. Aguilar, J.M. Combes, Comm. Math. Phys., t. 22, 1971, p. 269-279. Zbl0219.47011MR345551
- [3] E. Balslev, J.M. Combes, Comm. Math. Phys., t. 22, 1971, p. 280-294. Zbl0219.47005MR345552
- [4] J.D. Dollard, J. Math. Phys., t. 5, 1964, p. 729-738. MR163620
- [5] V. Enss, Ann. Phys. (N. Y.), t. 119, 1979, p. 117-132. Addendum, Preprint, Bielefeld, 1979. MR535624
- [6] L. Hormander, Math. Z., t. 146, 1976, p. 69-91. Zbl0319.35059MR393884
- [7] T. Ikebe, J. Funct. Anal., t. 20, 1975, p. 158-177. Zbl0315.35067
- [8] T. Ikebe, Publ. Res. Inst. Math. Sci., t. 11, 1976, p. 551-558. Zbl0345.35032MR440213
- [9] T. Ikebe, H. Isozaki, Publ. Res. Inst. Math. Sci., t. 15, 1979, p. 679-718. Zbl0432.35061MR566076
- [10] T. Ikebe, H. Isozaki, Integral Equations Operator Theory, t. 5, 1982, p. 18-49. MR646878
- [11] H. Isozaki, Publ. Res. Inst. Math. Sci., t. 13, 1977, p. 589-626. Zbl0435.47011MR479087
- [12] H. Isozaki, H. Kitada, Private Communication.
- [13] A. Jensen, T. Kato, Duke Math. J., t. 46, 1979, p. 583-611. Zbl0448.35080MR544248
- [14] A. Jensen, Comm. Math. Phys., t. 82, 1981, p. 435-456. Zbl0483.47031MR641772
- [15] A. Jensen, Lett. Math. Phys., t. 7, 1983, p. 137-143. Zbl0517.47010MR708436
- [16] T. Kato, Math. Ann., t. 162, 1966, p. 258-279. Zbl0139.31203MR190801
- [17] T. Kato, Studia Math., t. 31, 1968, p. 535-546. Zbl0215.48802MR234314
- [18] H. Kitada, Proc. Japan Acad. Ser. A Math. Sci., t. 52, 1976, p. 409-412. Zbl0358.35024MR422911
- [19] H. Kitada, J. Math. Soc. Japan, t. 29, 1977, p. 665-691. Zbl0356.47006MR634802
- [20] H. Kitada, J. Math. Soc. Japan, t. 30, 1978, p. 603-632. Zbl0388.35055MR634803
- [21] R. Lavine, Comm. Math. Phys., t. 20, 1971, p. 301-323. Zbl0207.13706MR293945
- [22] R. Lavine, J. Math. Phys., t. 14, 1973, p. 376-379. Zbl0269.47005
- [23] E. Mourre, Comm. Math. Phys., t. 68, 1979, p. 91-94. Zbl0429.47006MR539739
- [24] E. Mourre, Comm. Math. Phys., t. 78, 1981, p. 391-408. Zbl0489.47010MR603501
- [25] E. Mourre, Algebraic approach to some propagation properties of the Schrödinger equation. In: Mathematical Problems of Theoretical Physics, ed. R. Schrader, R. Seiler, P. A. Uhlenbrock. Lecture Notes in Physics, No. 153, Springer Verlag, Berlin, etc., 1981.
- [26] E. Mourre, Comm. Math. Phys., t. 91, 1983, p. 279-300. Zbl0543.47041MR723552
- [27] E. Mourre, Preprint, CPT-CNRS, Marseille, 1982.
- [28] P.L. Muthuramalingam, K.B. Sinha, Preprint, Indian Statistical Institute, 1983.
- [29] P. Perry, Comm. Math. Phys., t. 81, 1981, p. 243-259. Zbl0471.47007MR632760
- [30] P. Perry, I. Sigal, B. Simon, Ann. Math., t. 114, 1981, p. 519-567. Zbl0477.35069MR634428
- [31] C.R. Putnam, Commutation Properties of Hilbert Space Operators and Related Topics. Springer Verlag, Berlin, etc., 1967. Zbl0149.35104MR217618
- [32] M. Reed, B. Simon, Methods of Modern Mathematical Physics. III. Scattering Theory. Academic Press, New York, 1979. Zbl0405.47007MR529429
- [33] Y. Saito, Osaka J. Math., t. 14, 1979, p. 37-53. Zbl0356.35020MR442505
- [34] Y. Saito, Spectral representations for Schrödinger operators with long-range potentials. Lecture Notes in Mathematics, Vol. 727, Springer Verlag, Berlin, etc., 1979. Zbl0414.47012MR540891
Citations in EuDML Documents
top- Jan Dereziński, Fermi Golden Rule, Feshbach Method and embedded point spectrum
- Michael Melgaard, Quantum scattering near the lowest Landau threshold for a Schrödinger operator with a constant magnetic field
- Arne Jensen, Scattering theory for hamiltonians with Stark effect
- Xue Ping Wang, Asymptotic expansion in time of the Schrödinger group on conical manifolds
- D. Robert, Asymptotique de la phase de diffusion à haute énergie pour des perturbations du laplacien
- T. Ozawa, Local decay estimates for Schrödinger operators with long range potentials
- Jean-François Bony, Dietrich Häfner, Local energy decay for several evolution equations on asymptotically euclidean manifolds
- D. Robert, Asymptotique de la phase de diffusion à haute énergie pour des perturbations du second ordre du laplacien
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.