Displaying similar documents to “Fermi Golden Rule, Feshbach Method and embedded point spectrum”

Spectrum of L

W. Marek, K. Rasmussen

Similarity:

CONTENTS0. Motivation, results to be used in the sequel ................51. Slicing L α ’s ..........................................................102. Hereditarily countable, definable elements ................133. Spectrum of L.............................................................154. The width of elements of spectrum ............................195. Non-uniform strong definability ..................................266. Solution to a problem of Wilmers................................327....

Conditions equivalent to C* independence

Shuilin Jin, Li Xu, Qinghua Jiang, Li Li (2012)

Studia Mathematica

Similarity:

Let and be mutually commuting unital C* subalgebras of (). It is shown that and are C* independent if and only if for all natural numbers n, m, for all n-tuples A = (A₁, ..., Aₙ) of doubly commuting nonzero operators of and m-tuples B = (B₁, ..., Bₘ) of doubly commuting nonzero operators of , S p ( A , B ) = S p ( A ) × S p ( B ) , where Sp denotes the joint Taylor spectrum.

Generalized spectral perturbation and the boundary spectrum

Sonja Mouton (2021)

Czechoslovak Mathematical Journal

Similarity:

By considering arbitrary mappings ω from a Banach algebra A into the set of all nonempty, compact subsets of the complex plane such that for all a A , the set ω ( a ) lies between the boundary and connected hull of the exponential spectrum of a , we create a general framework in which to generalize a number of results involving spectra such as the exponential and singular spectra. In particular, we discover a number of new properties of the boundary spectrum.

On the norm-closure of the class of hypercyclic operators

Christoph Schmoeger (1997)

Annales Polonici Mathematici

Similarity:

Let T be a bounded linear operator acting on a complex, separable, infinite-dimensional Hilbert space and let f: D → ℂ be an analytic function defined on an open set D ⊆ ℂ which contains the spectrum of T. If T is the limit of hypercyclic operators and if f is nonconstant on every connected component of D, then f(T) is the limit of hypercyclic operators if and only if f ( σ W ( T ) ) z : | z | = 1 is connected, where σ W ( T ) denotes the Weyl spectrum of T.

Subsets of nonempty joint spectrum in topological algebras

Antoni Wawrzyńczyk (2018)

Mathematica Bohemica

Similarity:

We give a necessary and a sufficient condition for a subset S of a locally convex Waelbroeck algebra 𝒜 to have a non-void left joint spectrum σ l ( S ) . In particular, for a Lie subalgebra L 𝒜 we have σ l ( L ) if and only if [ L , L ] generates in 𝒜 a proper left ideal. We also obtain a version of the spectral mapping formula for a modified left joint spectrum. Analogous theorems for the right joint spectrum and the Harte spectrum are also valid.

The third order spectrum of the p-biharmonic operator with weight

Khalil Ben Haddouch, Najib Tsouli, Zakaria El Allali (2014)

Applicationes Mathematicae

Similarity:

We show that the spectrum of Δ ² p u + 2 β · ( | Δ u | p - 2 Δ u ) + | β | ² | Δ u | p - 2 Δ u = α m | u | p - 2 u , where β N , under Navier boundary conditions, contains at least one sequence of eigensurfaces.

Some examples of cocycles with simple continuous singular spectrum

K. Frączek (2001)

Studia Mathematica

Similarity:

We study spectral properties of Anzai skew products T φ : ² ² defined by T φ ( z , ω ) = ( e 2 π i α z , φ ( z ) ω ) , where α is irrational and φ: → is a measurable cocycle. Precisely, we deal with the case where φ is piecewise absolutely continuous such that the sum of all jumps of φ equals zero. It is shown that the simple continuous singular spectrum of T φ on the orthocomplement of the space of functions depending only on the first variable is a “typical” property in the above-mentioned class of cocycles, if α admits a sufficiently...

Ascent spectrum and essential ascent spectrum

O. Bel Hadj Fredj, M. Burgos, M. Oudghiri (2008)

Studia Mathematica

Similarity:

We study the essential ascent and the related essential ascent spectrum of an operator on a Banach space. We show that a Banach space X has finite dimension if and only if the essential ascent of every operator on X is finite. We also focus on the stability of the essential ascent spectrum under perturbations, and we prove that an operator F on X has some finite rank power if and only if σ a s c e ( T + F ) = σ a s c e ( T ) for every operator T commuting with F. The quasi-nilpotent part, the analytic core and the single-valued...

The single-point spectrum operators satisfying Ritt's resolvent condition

Yu. Lyubich (2001)

Studia Mathematica

Similarity:

It is shown that an operator with the properties mentioned in the title does exist in the space L p ( 0 , 1 ) , 1 ≤ p ≤ ∞. The maximal sector for the extended resolvent condition can be prescribed a priori jointly with the corresponding order of the exponential growth of the resolvent in the complementary sector.

Resonant delocalization for random Schrödinger operators on tree graphs

Michael Aizenman, Simone Warzel (2013)

Journal of the European Mathematical Society

Similarity:

We analyse the spectral phase diagram of Schrödinger operators T + λ V on regular tree graphs, with T the graph adjacency operator and V a random potential given by i i d random variables. The main result is a criterion for the emergence of absolutely continuous ( a c ) spectrum due to fluctuation-enabled resonances between distant sites. Using it we prove that for unbounded random potentials a c spectrum appears at arbitrarily weak disorder ( λ 1 ) in an energy regime which extends beyond the spectrum of T ....

The essential spectrum of holomorphic Toeplitz operators on H p spaces

Mats Andersson, Sebastian Sandberg (2003)

Studia Mathematica

Similarity:

We compute the essential Taylor spectrum of a tuple of analytic Toeplitz operators T g on H p ( D ) , where D is a strictly pseudoconvex domain. We also provide specific formulas for the index of T g provided that g - 1 ( 0 ) is a compact subset of D.

Reticulation of a 0-distributive Lattice

Y. S. Pawar (2015)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

A congruence relation θ on a 0-distributive lattice is defined such that the quotient lattice L / θ is a distributive lattice and the prime spectrum of L and of L / θ are homeomorphic. Also it is proved that the minimal prime spectrum (maximal spectrum) of L is homeomorphic with the minimal prime spectrum (maximal spectrum) of L / θ .

The norm spectrum in certain classes of commutative Banach algebras

H. S. Mustafayev (2011)

Colloquium Mathematicae

Similarity:

Let A be a commutative Banach algebra and let Σ A be its structure space. The norm spectrum σ(f) of the functional f ∈ A* is defined by σ ( f ) = f · a : a A ¯ Σ A , where f·a is the functional on A defined by ⟨f·a,b⟩ = ⟨f,ab⟩, b ∈ A. We investigate basic properties of the norm spectrum in certain classes of commutative Banach algebras and present some applications.

On operators with the same local spectra

Aleksandar Torgašev (1998)

Czechoslovak Mathematical Journal

Similarity:

Let B ( X ) be the algebra of all bounded linear operators in a complex Banach space X . We consider operators T 1 , T 2 B ( X ) satisfying the relation σ T 1 ( x ) = σ T 2 ( x ) for any vector x X , where σ T ( x ) denotes the local spectrum of T B ( X ) at the point x X . We say then that T 1 and T 2 have the same local spectra. We prove that then, under some conditions, T 1 - T 2 is a quasinilpotent operator, that is ( T 1 - T 2 ) n 1 / n 0 as n . Without these conditions, we describe the operators with the same local spectra only in some particular cases.